如圖,兩塊陰影部分的面積和為
 

考點(diǎn):定積分在求面積中的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)積分的幾何意義即可得到結(jié)論.
解答: 解:由y=ex=e,解得x=1,由lnx=0解得x=1,
∵y=ex,和y=lnx是反函數(shù),關(guān)于y=x對稱,
∴兩個陰影部分的面積相同,
則由積分的幾何意義可得區(qū)邊OACD的面積為S=
1
0
exdx
=ex
|
1
0
=e-1,
則矩形OBCD的面積S=1×e=e,
則陰影部分ABC的面積S=e-(e-1)=1,
則陰影部分的面積S=2
故答案為:2
點(diǎn)評:本題主要考查陰影部分的面積的求解,利用積分的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=2求下列各式的值:
(1)
sinθ-cosθ
sinθ+cosθ
;               
(2)sin2θ-2cos2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(-2,k),若
a
∥(
a
+
b
),則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的第8、第9、第10項(xiàng)分別為b-1、b+1、2b+3,則數(shù)列{an}通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

考察下列一組不等式:23+53>22.5+2.55,24+54>23.5+2.53,24+54>23.5+2.53,25+55>23.52+22.53,+…+
將上述不等式在左右兩端仍為兩項(xiàng)和的情況下加以推廣,使以上的不等式成為推廣不等式的特例,則推廣的不等式可以是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

G在△ABC所在平面上有一點(diǎn)P,滿足
PA
+
PB
+
PC
=
AB
,則△PAB與△ABC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在圓錐PO中,已知PO=
2
,⊙O的直徑AB=2,點(diǎn)C在
AB
上,且∠CAB=30°,D為AC的中點(diǎn),則直線OC和平面PAC所成角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是某池塘中浮萍的面積y(m2)與時間t(月)的關(guān)系y=f(t)=at,有以下敘述:
①這個指數(shù)函數(shù)的底數(shù)為2;
②第5個月時,浮萍面積就會超過30m2;
③浮萍每月增加的面積都相等;
④若浮萍蔓延到2m2,3m2,6m2
經(jīng)過的時間分別是t1,t2,t3,則t1+t2=t3
其中正確的是
 
.(寫出命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①函數(shù)y=f(-x+2)與y=f(x-2)的圖象關(guān)于y軸對稱;
②若函數(shù)f(x+2012)=x2-2x-1(x∈R),則函數(shù)f(x)的最小值為-2;
③若函數(shù)f(x)=loga|x|(a>0,a≠1)在(0,+∞)上單調(diào)遞增,則f(-2)>f(a+1);
④若f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
是(-∞,+∞)上的減函數(shù),則a的取值范圍是(0,
1
3
).其中正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案