分析 (Ⅰ)求函數(shù)的定義域,根據(jù)函數(shù)奇偶性的定義即可判斷f(x)奇偶性;
(Ⅱ)當0<a<1時,根據(jù)對數(shù)函數(shù)的單調(diào)性即可解不等式f(x)>0.
解答 解:(Ⅰ)由$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,得$\left\{\begin{array}{l}{x>-1}\\{x<1}\end{array}\right.$,
即-1<x<1,即定義域為(-1,1),
則f(-x)=loga(1-x)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-f(x),
則f(x)為奇函數(shù).
(Ⅱ)當0<a<1時,由f(x)>0,
即loga(1+x)-loga(1-x)>0,
即loga(1+x)>loga(1-x),
則1+x<1-x,
解得-1<x<0,
則不等式解集為:(-1,0).
點評 本題主要考查函數(shù)奇偶性的判斷以及對數(shù)不等式的求解,利用定義法以及對數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3y<3x | B. | x3>y3 | C. | log4x<log4y | D. | ($\frac{1}{4}$)x<($\frac{1}{4}$)y |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com