求函數(shù)f(x)=x2-2ax+1在區(qū)間[1,3]上的最大值與最小值.
考點:二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將f(x)配方得:f(x)=(x-a)2+1-a2,所以對稱軸是x=a,所以討論對稱軸x=a和區(qū)間[1,3]的關(guān)系:有三種關(guān)系:(1)對稱軸在區(qū)間的右邊,(2)對稱軸在區(qū)間上,(3)對稱軸在區(qū)間左邊,為便于比較f(1),f(3)的大小,第二種情況又分為在區(qū)間(1,
3
2
],和區(qū)間(
3
2
,3)上,根據(jù)二次函數(shù)的單調(diào)性及頂點求出每種情況下的f(x)的最大值,最小值即可.
解答: 解:f(x)=x2-2ax+1=(x-a)2+1-a2;
①若a≥3,則函數(shù)f(x)在[1,3]上單調(diào)遞減,所以:
f(x)的最大值為f(1)=2-2a,f(x)的最小值為f(3)=10-6a;
②若1<a≤
3
2
,f(x)的最大值為f(3)=10-6a,最小值為f(a)=1-a2;
③若
3
2
<a<3
,f(x)的最大值是f(1)=2-2a,最大值為f(a)=1-a2
④若a≤1,則f(x)在[1,3]上單調(diào)遞增,所以:
f(x)的最大值為f(3)=10-6a,最小值為f(1)=2-2a.
點評:考查根據(jù)二次函數(shù)的單調(diào)性及取得頂點的情況求二次函數(shù)最值的方法,以及二次函數(shù)單調(diào)性和對稱軸的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x-1)=x3-3x2+2x,則f(x)的解析式為
 
;f(2x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-4x+3,x∈[0,3]的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,sinA=
8
17
,cosB=
3
5
,則cosC等于( 。
A、-
13
85
77
85
B、
77
85
C、-
77
85
D、-
13
85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)F(x)=(1-x)f′(x)的圖象如圖所示,零點分別為-1,1,2,則f(-1),f(1),f(2)的大小關(guān)系正確的是( 。
A、f(-1)=f(1)=f(2)
B、f(-1)<f(1)<f(2)
C、f(-1)>f(1)>f(2)
D、f(-1)<f(2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b的圖象與x軸在(0,1)上有兩個不同的交點,求b(1+a+b)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)范圍內(nèi)因式分解:x2-2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2|x|-3.
(Ⅰ)作出函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;以及在各單調(diào)區(qū)間上的增減性.
(Ⅱ)求函數(shù)f(x)當x∈[-2,4]時的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先作與函數(shù)y=lg
1
2-x
的圖象關(guān)于原點對稱的圖象,再將所得圖象向右平移2個單位得圖象C1,又y=f(x)的圖象C2與C1關(guān)于y=x對稱,則圖象y=f(x)的解析式是
 

查看答案和解析>>

同步練習(xí)冊答案