7.下列四個數(shù)中數(shù)值最大的是( 。
A.1111(2)B.16C.23(7)D.30(6)

分析 利用進位制轉(zhuǎn)化,再比較大小即可.

解答 解:對于A,1111(2)=1×1+1×2+1×4+1×8=15,
對于C,23(7)=2×7+3×1=17;
對于D,30(6)=3×6+0×1=18,
∴四個數(shù)中數(shù)值最大的是18,即30(6)
故選:D.

點評 本題考查大小比較,考查進位制,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),f′(x)為其導(dǎo)函數(shù),當(dāng)x>0時,f(x)+x•f′(x)>0,且f(1)=0,則不等式x•f(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.f(x)=x2+3xB.y=(x-1)2C.g(x)=2-xD.y=log0.5(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一箱電子產(chǎn)品有6件,其中2件次品,4件正品,現(xiàn)不放回地進行抽檢,每次抽檢一件,直到檢驗出所有次品為止,那么抽檢次數(shù)X的數(shù)學(xué)期望為( 。
A.$\frac{14}{3}$B.$\frac{13}{3}$C.3D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果直線l1:ax+2y+6=0與直線l2:x+(a-1)y+3=0垂直,那么a等于( 。
A.2B.-1C.-1或2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知:向量$\overrightarrow{m}$=(cosx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(2cosx,2cosx),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求y=f(x)對稱中心坐標(biāo);
(Ⅱ)求y=f(x)在($\frac{π}{12}$,$\frac{7π}{12}$)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sin(x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$],k∈Z
C.[kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$],k∈ZD.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=$\left\{\begin{array}{l}{\frac{2}{x},x≥2}\\{(x-1)^{3},x<2}\end{array}\right.$,若函數(shù)g(x)=f(x)-k有兩個零點,則兩零點所在的區(qū)間為( 。
A.(-∞,0)B.(0,1)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如表:
是否需要志愿者
需要4030
不需要160270
由${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2≈9.967
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.有99%以上的把握認為“需要志愿者提供幫助與性別無關(guān)”
B.有99%以上的把握認為“需要志愿者提供幫助與性別有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認為“需要志愿者提供幫助與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認為“需要志愿者提供幫助與性別無關(guān)”

查看答案和解析>>

同步練習(xí)冊答案