a
b
=|
a
|•|
b
|•cosλ>0,求λ的取值范圍.
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:由條件結合
a
b
=|
a
|•|
b
|•cosθ
(θ為兩向量的夾角),再由余弦函數(shù)的性質,即可求出λ的取值范圍.
解答: 解:∵
a
b
=|
a
|•|
b
|•cosλ>0,又
a
b
=|
a
|•|
b
|•cosθ
(θ為兩向量的夾角)
∴cosθ=cosλ>0,
∴2kπ≤λ<2kπ+
π
2
或2kπ-
π
2
<λ≤2kπ,k∈Z,
即λ的取值范圍是(2kπ-
π
2
,2kπ+
π
2
),k∈Z.
點評:本題考查向量的數(shù)量積的定義,同時考查余弦函數(shù)的圖象和性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
2+
2
3
=2
2
3
,
3+
3
8
=3
3
8
4+
4
15
=4
4
15
,…,若
6+
a
t
=6
a
t
(a,t均為正實數(shù)).類比以上等式,可推測a,t的值,則t+a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4-7m2+9=0,若該方程表示一個圓,求m的取值范圍及圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,an=(2n-3)×(
1
2
n,求數(shù)列的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=a2-a-x,(a>0且a≠1),當x∈[1,2]時函數(shù)f(x)的最大值為
3
2
,求此時a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠B=
π
2
,AB=BC=2,P為AB邊上一動點,PD∥BC交AC于點D,現(xiàn)將△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(Ⅰ)若點P為AB的中點,E為A′C的中點,求證:A′B⊥DE;
(Ⅱ)當棱錐A′-PBCD的體積最大時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某次素質測試,隨機抽取了部分學生的成績,得到如圖所示的頻率分布直方圖.
(1)估計成績的平均值;
(2)若成績排名前5的學生中,有一人是學生會主席,從這5人中推薦3人參加自主招生考試,試求這3人中含該學生會主席的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(
2
,2)在冪函數(shù)f(x)的圖象上,函數(shù)g(x)=2mx+
1
2

(1)求f(x)的解析式;
(2)對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),若對于任意的x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)和g(x)在區(qū)間[a,b]上是接近的,否則稱f(x)和g(x)在區(qū)間[a,b]上是非接近的.
①f1(x)=sinx,f2(x)=x,判斷f1(x),f2(x)在區(qū)間[-π,π]上是否接近的,若是,請證明,不是,舉個反例說明;
②若f(x)和g(x)在區(qū)間[1,2]上是接近的,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一張坐標紙折疊一次,使得點(3,-2)與點(-1,2)重合,點(7,3)與點(m,n)重合,則mn=
 

查看答案和解析>>

同步練習冊答案