2.2log6$\sqrt{2}$+3log6$\root{3}{3}$等于1.

分析 直接利用對數(shù)的運算法則化簡求解即可.

解答 解:2log6$\sqrt{2}$+3log6$\root{3}{3}$=log62+log63=log66=1.
故答案為:1.

點評 本題考查對數(shù)的運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知p:-2≤x≤5,q:m+1≤x≤2m-1,若q是p的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\sqrt{3}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)(cos$\frac{x}{2}$+sin$\frac{x}{2}$)+2sin$\frac{x}{2}$cos$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象先向左平移$\frac{π}{6}$個單位,再把圖象上各點的橫坐標變?yōu)樵瓉淼?\frac{2}{π}$倍,縱坐標不變,得到函數(shù)g(x)的圖象,數(shù)列{an}滿足an=g(n),記數(shù)列{an}的前n項和為Sn,求S17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在正方體AC1中.
(1)求AD與BB1所成的角;
(2)求AC與BC1所成的角;
(3)AA1,AB,CC1的中點分別是E,F(xiàn),G,求EF與A1G所成的角;
(4)求EF與D1B1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的奇函數(shù)f(x)滿足f(x-1)=f(x+1),當x∈(0,1]時,f(x)=x+3,則f(-$\frac{5}{2}$)=(  )
A.-$\frac{3}{2}$B.-$\frac{7}{2}$C.-2D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,若a1004+a1006+a1008=9,則該數(shù)列的前2011項的和為( 。
A.6033B.6030C.2011D.2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如果函數(shù)$f(x)=\frac{{1-{x^2}}}{{1+{x^2}}}$,那么$f(1)+f(2)+…+f(2015)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{2015})$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,AB邊上的中線CD等于2,動點P滿足$\overrightarrow{AP}$=$\frac{1}{2}$t•$\overrightarrow{AB}$+(1-t)•$\overrightarrow{AC}$(0≤t≤1),則($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的取值范圍為[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.數(shù)列{an}的通項公式是an=$\frac{1}{\sqrt{n}-\sqrt{n+1}}$(n∈N+),若前n項的和為10,則項數(shù)n為(  )
A.11B.99C.120D.121

查看答案和解析>>

同步練習(xí)冊答案