分析 求出函數(shù)f(x)的導函數(shù),由函數(shù)f(x)在區(qū)間(-1,1)上是單調減函數(shù),f′(x)≤0在x∈(-1,1)上恒成立,轉化為求函數(shù)的最值恒成立即可.
解答 解:∵f(x)=x3-ax-1,
∴f'(x)=3x2-a,
要使f(x)在(-1,1)上單調遞減,
則f′(x)≤0在x∈(-1,1)上恒成立,
則3x2-a≤0,
即a≥3x2,在x∈(-1,1)上恒成立,
在x∈(-1,1)上,3x2<3,
即a≥3,
∴a的取值范圍為[3,+∞).
故答案為:[3,+∞).
點評 本題考查了函數(shù)的單調性與函數(shù)的導函數(shù)的關系,將不等式恒成立轉化為求函數(shù)的最值是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 大前提錯 | B. | 小前提錯 | ||
C. | 推理形式錯 | D. | 大前提和小前提都錯 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12種 | B. | 30種 | C. | 96種 | D. | 144種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{5}{2}$ | D. | $-\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 32+$\frac{16π}{3}$ | B. | 32+$\frac{64π}{3}$ | C. | 64+$\frac{16π}{3}$ | D. | 64+$\frac{64π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2π | C. | 1-$\frac{π}{4}$ | D. | 1-$\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com