11.已知函數(shù)f(x)=x3-ax-1,若f(x)在(-1,1)在單調遞減,則a的取值范圍為[3,+∞).

分析 求出函數(shù)f(x)的導函數(shù),由函數(shù)f(x)在區(qū)間(-1,1)上是單調減函數(shù),f′(x)≤0在x∈(-1,1)上恒成立,轉化為求函數(shù)的最值恒成立即可.

解答 解:∵f(x)=x3-ax-1,
∴f'(x)=3x2-a,
要使f(x)在(-1,1)上單調遞減,
則f′(x)≤0在x∈(-1,1)上恒成立,
則3x2-a≤0,
即a≥3x2,在x∈(-1,1)上恒成立,
在x∈(-1,1)上,3x2<3,
即a≥3,
∴a的取值范圍為[3,+∞).
故答案為:[3,+∞).

點評 本題考查了函數(shù)的單調性與函數(shù)的導函數(shù)的關系,將不等式恒成立轉化為求函數(shù)的最值是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,在平行四邊形OABC中,點E,F(xiàn)分別在AB,BC上,且滿足AB=2AE,BC=3CF.若$\overrightarrow{OB}$=λ$\overrightarrow{OE}$+μ$\overrightarrow{OF}$(λ、μ∈R),則λ+μ=$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.“因為指數(shù)函數(shù)y=ax是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)”,導致上面推理錯誤的原因是( 。
A.大前提錯B.小前提錯
C.推理形式錯D.大前提和小前提都錯

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.把7個字符1,1,1,A,A,α,β排成一排,要求三個“1”兩兩不相鄰,且兩個“A“也不相鄰,則這樣的排法共有(  )
A.12種B.30種C.96種D.144種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.定義:若兩個二次曲線的離心率相等,則稱這兩個二次曲線相似.如圖,橢圓C的中心在原點,焦點在x軸上,右頂點為A,以其短軸的兩個端點B1,B2及其一個焦點為頂點的三角形是邊長為6的正三角形,M是C上異于B1,B2的一個動點,△MB1B2的重心為G,G點的軌跡記為C1
(Ⅰ)(i)求C的方程;
(ii)求證:C1與C相似;
(Ⅱ)過B1點任作一直線,自下至上依次與C1、x軸的正半軸、C交于不同的四個點P,Q,R,S,求$\frac{|{B}_{1}S{|}^{2}-|PR{|}^{2}}{|AQ|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.直線3x-ay+8=0與直線x+2y+1=0垂直,則a的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow{AC},\overrightarrow{AD}$和$\overrightarrow{AB}$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ-μ=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{5}{2}$D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個幾何體的三視圖如圖,則該幾何體的體積為( 。
A.32+$\frac{16π}{3}$B.32+$\frac{64π}{3}$C.64+$\frac{16π}{3}$D.64+$\frac{64π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中俯視圖中的弧線是半徑為1的四分之一個圓弧,則該幾何體的體積為( 。
A.1B.C.1-$\frac{π}{4}$D.1-$\frac{π}{2}$

查看答案和解析>>

同步練習冊答案