【題目】已知函數(shù)

1)當時,求函數(shù)的極小值;

2)若上,使得成立,求的取值范圍.

【答案】(1)2;(2) .

【解析】試題分析:(1)將參數(shù)值代入表達式,再進行求導,根據(jù)導函數(shù)的正負得到原函數(shù)的單調性,進而得到極值;(2,有解,即h(x)的最小值小于0即可,對函數(shù)求導,研究函數(shù)的單調性,得到最小值即可.

解析:

1)當時,

0,得

上單調遞增,在上單調遞減,在上單調遞增

所以時取得極小值為.

2)由已知:,使得

,即:

,則只需要函數(shù)上的最小值小于零.

,

,得(舍去)或

①當,即時,上單調遞減,

上的最小值為,由,可得

因為,所以

②當,即時,上單調遞增,

上的最小值為,由,

可得(滿足).

③當,即時,上單調遞減,在上單調遞增,故上的最小值為

因為,所以

所以,即,不滿足題意,舍去.

綜上可得,

所以實數(shù)的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下表中的數(shù)表為森德拉姆篩”(森德拉姆,東印度學者),其特點是每行每列都成等差數(shù)列.

2

3

4

5

6

7

3

5

7

9

11

13

4

7

10

13

16

19

5

9

13

17

21

25

6

11

16

21

26

31

7

13

19

25

31

37

在上表中,2017出現(xiàn)的次數(shù)為(

A. 18 B. 36 C. 48 D. 72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內的交點為,且.

(1)求橢圓的方程;

(2)過點的直線交橢圓兩點,當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2+y2=2,直線.ly=kx-2

1)若直線l與圓O相切,求k的值;

2)若直線l與圓O交于不同的兩點AB,當∠AOB為銳角時,求k的取值范圍;

3)若,P是直線l上的動點,過P作圓O的兩條切線PCPD,切點為CD,探究:直線CD是否過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;

(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中為函數(shù)的導數(shù)若對于,則稱函數(shù)D上的凸函數(shù).

求證:函數(shù)是定義域上的凸函數(shù);

已知函數(shù),上的凸函數(shù).

求實數(shù)a的取值范圍;

求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補全頻率分布直方圖并求、、的值;

2)從歲年齡段的低碳族中采用分層抽樣法抽取18人參加戶外低碳體驗活動,如何抽取?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠要建造一個長方形無蓋蓄水池,其容積為立方米,深為.如果池底每平方米的造價為元,池壁每平方米的造價為元,那么怎樣設計水池能使總造價最低(設蓄水池池底的相鄰兩邊邊長分別為,)?最低總造價是多少?

查看答案和解析>>

同步練習冊答案