17.已知函數(shù)f(n)=log(n+1)(n+2)(n∈N*),定義使f(1)•f(2)•f(3)…f(k)為整數(shù)的k(k∈N*)叫做企盼數(shù),則在區(qū)間[1,2016]內(nèi)的企盼數(shù)的個數(shù)為( 。
A.8B.9C.10D.11

分析 由已知中函數(shù)f(n)=logn+1(n+2)(n∈N*),由對數(shù)運(yùn)算的性質(zhì)易得f(1)•f(2)…f(k)=log2(k+2),若其值為整數(shù),則k+2=2n(n∈Z),結(jié)合k∈[1,2016],我們易得到滿足條件的數(shù)的個數(shù).

解答 解:∵函數(shù)f(n)=logn+1(n+2)(n∈N*),
∴f(1)=log23,
f(2)=log34

f(k)=logk+1(k+2),
∴f(1)•f(2)…f(k)=log23•log34…logk+1(k+2)=log2(k+2),
若f(1)•f(2)…f(k)為整數(shù)
則k+2=2n(n∈Z)
又∵k∈[1,2016],
故k∈{2,6,14,30,62,126,254,510,1022}
故選:B

點評 本題考查的知識點是對數(shù)的運(yùn)算性質(zhì),其中用換底公式求得(1)•f(2)…f(k)=log2(k+2)是解答本題的關(guān)鍵,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.△ABC在平面內(nèi),點P在外,PC⊥面ABC,且∠BPA=90°,則∠BCA是( 。
A.直角B.銳角C.鈍角D.直角或銳角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.傾斜角為45°的直線l經(jīng)過拋物線y2=8x的焦點F,且l與拋物線交于A,B兩點,則|$\overrightarrow{FA}$|•|$\overrightarrow{FB}$|的值為32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3(a∈R).
(1)若對?x∈(0,+∞),恒有不等式f(x)≥$\frac{1}{2}$g(x),求a得取值范圍;
(2)證明:對?x∈(0,+∞),有l(wèi)nx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=4x的焦點為F,點M(m,0)在x軸的正半軸上且不與點F重合,若拋物線上的點滿足$\overrightarrow{FA}$•$\overrightarrow{MA}$=0,且這樣的點A只有兩個,則m滿足( 。
A.m=9B.m>9或0<m<1C.m>9D.0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,a1=-2012,其前n項和為Sn,若$\frac{{{S_{2012}}}}{2012}$-$\frac{{{S_{10}}}}{10}$=2002,則S2014的值等于(  )
A.2011B.-2012C.2014D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果S為(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.α,β為兩個不同的平面,l,m,n為三條不同的直線,且l,m?α,n?β,則下列命題正確的是( 。
A.若l∥β,m∥β,則α∥βB.若n⊥l,n⊥m,則n⊥αC.若n∥l,n∥m,則n∥αD.若l⊥β,m∥n,則l⊥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|log2x<4},N={y|y=($\frac{1}{2}$)x,x<0},則M∩(∁RN)=( 。
A.(0,1]B.[0,1)C.[1,2)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案