6.下列說法正確的是(  )
A.y=sinx在第三象限內(nèi)是增函數(shù)B.函數(shù)y=sinx(x∈R)的值域是(-1,1)
C.y=cosx在x=2kπ(k∈Z)時取值最大D.y=tanx在整個定義域內(nèi)都是增函數(shù)

分析 根據(jù)三角函數(shù)的性質(zhì)分別進(jìn)行判斷即可.

解答 解:A.y=sinx在第三象限內(nèi)不具備單調(diào)性,故A錯誤,
B.函數(shù)y=sinx(x∈R)的值域是[-1,1],故B錯誤,
C.當(dāng)x=2kπ(k∈Z)時,y=cosx取得最大值1,故C正確,
D.y=tanx在整個定義域內(nèi)不具備單調(diào)性,故D錯誤,
故選:C

點(diǎn)評 本題主要考查命題的真假判斷,涉及三角函數(shù)的圖象和性質(zhì),比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC內(nèi),若$bsinA=\sqrt{3}acosB$,b=3,sinC=2sinA,則c的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$2\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若|$\overrightarrow{a}$$+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,則下列結(jié)論中,正確的是(4)(填序號).
(1)$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{0}$;
(2)$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$;
(3)|$\overrightarrow{a}$|=|$\overrightarrow$|;
(4)$\overrightarrow{a}$•$\overrightarrow$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知sinθ-2cosθ=0,則cos2θ-sin2θ=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列各式的值:
(1)cos105° 
(2)cos(-$\frac{25π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.利用五點(diǎn)作圖法作下列函數(shù)在[0,2π]上的圖象.
(1)y=sinx-1;
(2)y=2-cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,∠B=90°,AB=3,BC=4,O為△ABC內(nèi)心,則$\overrightarrow{AO}•\overrightarrow{BC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=$\frac{2π}{3}$.
(1)求證:平面ADE⊥平面ABE;
(2)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知正六棱柱的最大對角面的面積為1m2,互相平行的兩個側(cè)面的距離為1m,則這個六棱柱的體積為( 。
A.$\frac{{3\sqrt{3}}}{4}$m3B.$\frac{3}{4}$m3C.1m3D.$\frac{1}{2}$m3

查看答案和解析>>

同步練習(xí)冊答案