3.如圖,已知AB⊥平面BCD,BC⊥CD,M是CD的中點(diǎn).則二面角A-CD-B的平面角是(  )
A.∠ADBB.∠BDCC.∠AMBD.∠ACB

分析 利用二面角的平面角的定義判斷推出結(jié)果即可.

解答 解:,已知AB⊥平面BCD,可知AB⊥CD,又BC⊥CD,AB∩BC=B,∴CD⊥平面ABC.
AC?平面ABC,∴CD⊥AC,
由二面角的平面角的定義可知:二面角A-CD-B的平面角是∠ACB.
故選:D.

點(diǎn)評 本題考查二面角的平面角的判斷,直線與平面垂直的判定定理的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的虛軸長為2,離心率為$\frac{{\sqrt{5}}}{2}$,F(xiàn)1,F(xiàn)2為雙曲線的兩個焦點(diǎn).
(1)求雙曲線的方程;
(2)若雙曲線上有一點(diǎn)P,滿足∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P是橢圓$\frac{{x}^{2}}{4}$+y2=1上的任意一點(diǎn),A(4,0),若M為線段PA中點(diǎn),則點(diǎn)M的軌跡方程是( 。
A.(x-2)2+4y2=1B.(x-4)2+4y2=1C.(x+2)2+4y2=1D.(x+4)2+4y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面四組函數(shù)中,函數(shù)f(x)和g(x)表示同一函數(shù)的是(  )
A.f(x)=$\sqrt{x-1}$•$\sqrt{x+3}$,g(x)=$\sqrt{{x}^{2}+2x-3}$B.f(x)=$\frac{{x}^{2}-2x+1}{x-1}$,g(x)=x-1
C.f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|}$,g(x)=$\frac{\sqrt{1-{x}^{2}}}{x+2}$D.以上三組都不是同一函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}的通項公式為an=log3$\frac{n}{n+1}$(n∈N*),設(shè)其前n項和為Sn,則使Sn<-4成立的最小自然數(shù)n等于81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出下列命題:
①log0.53<2${\;}^{\frac{1}{3}}$<($\frac{1}{3}$)0.2; 
②函數(shù)f(x)=log4x-2sinx有5個零點(diǎn);
③函數(shù)f(x)=ln$\frac{x-4}{x-6}$+$\frac{x}{12}$的圖象以$(5,\frac{5}{12})$為對稱中心;
④已知a、b、m、n、x、y均為正數(shù),且a≠b,若a、m、b、x成等差數(shù)列,a、n、b、y成等比數(shù)列,則有m>n,x<y.
其中正確命題的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,∠C=90°,BC=8,AB=10,O為BC上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與BC邊、AB邊分別交于點(diǎn)D、E,連結(jié)DE.
(Ⅰ)若BD=6,求線段DE的長;
(Ⅱ)過點(diǎn)E作半圓O的切線,切線與AC相交于點(diǎn)F,證明:AF=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=5,b=4,sin(A-B)=$\frac{3\sqrt{7}}{32}$.
(1)求sinBsinA的值;
(2)求cosC+cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.為使$\sqrt{cosx}$+lg(4-x2)有意義,x的取值范圍是[-$\frac{π}{2}$,$\frac{π}{2}$].

查看答案和解析>>

同步練習(xí)冊答案