分析 (1)由題意,求出函數(shù)$f(x)=\frac{lnx+k}{e^x}$的導(dǎo)數(shù),再由曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行可得出f′(1)=0,由此方程即可解出k的值;
(2)由(1)知,f′(x)=$\frac{1-xlnx-x}{x{e}^{x}}$,x∈(0,+∞),利用導(dǎo)數(shù)解出函數(shù)的單調(diào)區(qū)間即可;
(3)先給出g(x)=xf'(x),考查解析式發(fā)現(xiàn)當(dāng)x≥1時(shí),g(x)=xf'(x)≤0<1+e-2一定成立,由此將問題轉(zhuǎn)化為證明g(x)<1+e-2在0<x<1時(shí)成立,利用導(dǎo)數(shù)求出函數(shù)在(0,1)上的最值,與1+e-2比較即可得出要證的結(jié)論.
解答 解:(1)函數(shù)$f(x)=\frac{lnx+k}{e^x}$,
∴f′(x)=$\frac{\frac{1}{x}-lnx-k}{{e}^{x}}$=$\frac{1-xlnx-kx}{x{e}^{x}}$,x∈(0,+∞),
由已知,f′(1)=$\frac{1-k}{e}$=0,∴k=1;
(2)由(1)知,f′(x)=$\frac{1-xlnx-x}{x{e}^{x}}$,x∈(0,+∞),
設(shè)h(x)=1-xlnx-x,x∈(0,+∞),h'(x)=-(lnx+2),
當(dāng)x∈(0,e-2)時(shí),h'(x)>0,當(dāng)x∈( e-2,1)時(shí),h'(x)<0,
可得h(x)在x∈(0,e-2)時(shí)是增函數(shù),在x∈( e-2,1)時(shí)是減函數(shù),在(1,+∞)上是減函數(shù),
又h(1)=0,h(e-2)>0,又x趨向于0時(shí),h(x)的函數(shù)值趨向于1
∴當(dāng)0<x<1時(shí),h(x)>0,從而f'(x)>0,
當(dāng)x>1時(shí)h(x)<0,從而f'(x)<0.
綜上可知,f(x)的單調(diào)遞增區(qū)間是(0,1),單調(diào)遞減區(qū)間是(1,+∞);
(3)由(2)可知,當(dāng)x≥1時(shí),g(x)=xf'(x)≤0<1+e-2,
故只需證明g(x)<1+e-2在0<x<1時(shí)成立.
當(dāng)0<x<1時(shí),ex>1,且g(x)>0,
∴g(x)=$\frac{1-xlnx-x}{{e}^{x}}$<1-xlnx-x.
設(shè)F(x)=1-xlnx-x,x∈(0,1),則F'(x)=-(lnx+2),
當(dāng)x∈(0,e-2)時(shí),F(xiàn)'(x)>0,當(dāng)x∈( e-2,1)時(shí),F(xiàn)'(x)<0,
所以當(dāng)x=e-2時(shí),F(xiàn)(x)取得最大值F(e-2)=1+e-2.
所以g(x)<F(x)≤1+e-2.
綜上,對(duì)任意x>0,g(x)<1+e-2.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的最值及曲線上某點(diǎn)處的切線方程,解題的關(guān)鍵是靈活利用導(dǎo)數(shù)工具進(jìn)行運(yùn)算及理解導(dǎo)數(shù)與要解決問題的聯(lián)系,此類題運(yùn)算量大,易出錯(cuò),且考查了轉(zhuǎn)化的思想,判斷推理的能力,綜合性強(qiáng),是高考常考題型,學(xué)習(xí)時(shí)要嚴(yán)謹(jǐn)認(rèn)真,注意總結(jié)其解題規(guī)律.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 144種 | B. | 240種 | C. | 120種 | D. | 96種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{5}{6}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{2}$,$\frac{3\sqrt{3}}{2}$)或($\frac{5}{2}$,-$\frac{3\sqrt{3}}{2}$) | B. | (5,0)或(-5,0) | ||
C. | ($\frac{5\sqrt{3}}{2}$,$\frac{3}{2}$)或(-$\frac{5\sqrt{3}}{2}$,-$\frac{3}{2}$) | D. | (0,3)或(0,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 6π | C. | 4π | D. | $\frac{π}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com