12.求y=sinx-cosx+sinxcosx,x∈[0,$\frac{π}{3}$]的值域.

分析 令t=sinx-cosx,由t=sin(x-$\frac{π}{4}$),根據(jù)正弦函數(shù)的性質求得t∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}-\sqrt{2}}{4}$],將y=sinxcosx+sinx-cosx轉化為y=-$\frac{1}{2}$t2+t+$\frac{1}{2}$,利用二次函數(shù)的性質及函數(shù)的取值范圍即可求得答案.

解答 解:y=sinx-cosx+sinxcosx,
令t=sinx-cosx,則sinxcosx=$\frac{1-{t}^{2}}{2}$,
由t=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$),x∈[0,$\frac{π}{3}$],
∴t∈[-1,$\frac{\sqrt{3}-1}{2}$],
∴y=-$\frac{1}{2}$t2+t+$\frac{1}{2}$,t∈[-1,$\frac{\sqrt{3}-1}{2}$],
根據(jù)二次函數(shù)的性質知其對稱軸t=1,
∴t在區(qū)間[-1,$\frac{\sqrt{3}-1}{2}$],單調遞增,
∴y在x∈[0,$\frac{π}{3}$]的值域為[-1,$\frac{3\sqrt{3}-2}{4}$].

點評 本題考查二倍角的正弦,考查二次函數(shù)的性質,重點體現(xiàn)了換元法和配方法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.高二年級1000名學生考試成績近似服從正態(tài)分布N(480,502),則成績在580分以上的學生人數(shù)均為( 。
(附:P(μ-σ<ξ<μ+σ)=68.26%;P(μ-2σ<ξ<μ+2σ)=95.44%)
A.3B.23C.46D.208

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知不等式|x+3|<2x+1的解集為{x|x>m}.
(Ⅰ)求m的值;
(Ⅱ)設關于x的方程|x-t|+|x+$\frac{1}{t}$|=m(t≠0)有解,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}}{x+1}+a(x>-1)}\\{{x}^{2}-2ax(x≤-1)}\end{array}\right.$的最小值為-6,則實數(shù)a的值為-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.若sinθ+cosθ=k,且sin3θ+cos3θ<0,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某電視生產廠家有A,B兩種型號的電視機參加家電下鄉(xiāng)活動,若廠家投放A,B型號電視機的價值分別為p,q萬元,農民購買電視機獲得的補貼分別為$\frac{1}{10}$p,$\frac{2}{5}$ln q萬元,已知廠家把總價值為10萬元的A、B兩種型號的電視機投放市場,且A、B兩種型號的電視機投放金額都不低于1萬元.
(1)設B型號電視機的價值為x萬元(1≤x≤9),農民得到的補貼為f(x)萬元,求補貼函數(shù)f(x)的解析式;
(2)問應分別投放A,B型號的電視機價值多少萬元,才能使得在這次活動中農民得到的補貼最多,并求出其最大值(精確到0.1,參考數(shù)據(jù):ln4≈1.4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\underset{lim}{x→0}$$\frac{f(x)}{x}$=2,則$\underset{lim}{x→0}$$\frac{f(x)}{sinx}$=( 。
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設常數(shù)a∈R,函數(shù)f(x)=(a${\;}^{\frac{5}{6}}$-x)|x|.
(1)若a=1,求f(x)的單調區(qū)間;
(2)若f(x)是奇函數(shù),且關于x的不等式mx2+m>f[f(x)]對所有的x∈[-2,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.為保障高考的公平性,高考時每個考點都要安裝手機信號屏蔽儀,要求在考點周圍1千米范圍內不能收到手機信號,檢查員抽查銀川市某考點,在距該考點正西方向$\sqrt{3}$千米處,檢查員用手機接通電話開始測試,并同時以每小時12千米的速度從此處沿一條北偏東60°方向的公路行駛,問最長需要多少分鐘檢查員開始收不到信號,并至少持續(xù)多長時間該考點信號屏蔽儀才算合格?

查看答案和解析>>

同步練習冊答案