9.若函數(shù)f(x)=(2x2+ax)•ex的單調(diào)遞減區(qū)間為(-3,-$\frac{1}{2}$),則實數(shù)a的值為3.

分析 求f′(x)=[2x2+(4+a)x+a]ex,ex>0,所以根據(jù)函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號的關(guān)系即可得到不等式2x2+(4+a)x+a<0的解為(-3,-$\frac{1}{2}$),所以x=-3,$-\frac{1}{2}$便是一元二次方程2x2+(4+a)x+a=0的兩實根,從而根據(jù)韋達定理即可求出a.

解答 解:f′(x)=[2x2+(4+a)x+a]ex
∵f(x)的單調(diào)遞減區(qū)間為(-3,$-\frac{1}{2}$);
∴f′(x)<0的解為$(-3,-\frac{1}{2})$;
即2x2+(4+a)x+a<0的解為(-3,$-\frac{1}{2}$);
∴x=-3,-$\frac{1}{2}$是方程2x2+(4+a)x+a=0的兩實根;
∴根據(jù)韋達定理$\left\{\begin{array}{l}{-\frac{4+a}{2}=-3-\frac{1}{2}}\\{\frac{a}{2}=\frac{3}{2}}\end{array}\right.$;
∴a=3.
故答案為:3.

點評 考查函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號的關(guān)系,以及根據(jù)導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法,一元二次不等式的解和對應(yīng)一元二次方程根的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x3的圖象為曲線C,給出以下四個命題:
①若點M在曲線C上,過點M作曲線C的切線可作一條且只能作一條;
②對于曲線C上任意一點P(x1,y1)(x1≠0),在曲線C上總可以找到一點Q(x2,y2),使x1和x2的等差中項是同一個常數(shù);
③設(shè)函數(shù)g(x)=|f(x)-2sin2x|,則g(x)的最小值是0;
④若f(x+a)≤8f(x)在區(qū)間[1,2]上恒成立,則a的最大值是1.
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\sqrt{3}$sin2x-1+2cos2x.
(1)求f(x)的最小正周期及x∈[0,$\frac{π}{2}$]時的最大值;
(2)把f(x)的圖象向左平移φ(φ>0)個單位,所得到的圖象對應(yīng)的函數(shù)為奇函數(shù),求φ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x-2lnx,求函數(shù)在點(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=ln(1+x)-$\frac{ax}{x+1}$
(1)當(dāng)a>0時,討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)若x≥0時有f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是函數(shù)y=f (x)的部分圖象,下列數(shù)值排序正確的是( 。
A.f (3)<f′(2)+f (2)B.f (3)>f′(3)+f (2)C.f (2)>f′(2)+f (1)D.f (2)>f′(1)+f (1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知F是拋物線y=$\frac{1}{4}$x2的焦點,P是該拋物線上的動點,則線段PF中點的軌跡方程是( 。
A.x2=2y-1B.x2=2y-$\frac{1}{16}$C.x2=y-$\frac{1}{2}$D.x2=2y-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線的頂點在坐標原點,焦點F在y軸上,點A(a,1)在拋物線上,且|FA|=2
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓x2+(y+1)2=1相切的直線l:y=kx+t交拋物線于不同的兩點M,N若拋物線上一點C滿足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+$\frac{1}{2}$mx2-2m2x-4有極大值-$\frac{2}{5}$,(m為非零常數(shù)),求m的值.

查看答案和解析>>

同步練習(xí)冊答案