分析 (1)首先,根據(jù)已知,得到A=1,$\frac{T}{2}=π$,從而有T=$\frac{2π}{ω}$=2π,然后,將點(diǎn)M($\frac{π}{3}$,$\frac{1}{2}$)代入,即可得到結(jié)果;
(2)根據(jù)(1),得到cosα=$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,然后,結(jié)合同角三角函數(shù)基本關(guān)系式求解即可.
解答 解:(1)根據(jù)題意,得A=1,
∵函數(shù)最大值與最小值間對應(yīng)的橫坐標(biāo)最小距離為π,
∴$\frac{T}{2}=π$,
∴T=$\frac{2π}{ω}$=2π,
∴ω=1.
∴f(x)=sin(x+φ),
將點(diǎn)M($\frac{π}{3}$,$\frac{1}{2}$)代入上述解析式,得.
f($\frac{π}{3}$)=sin($\frac{π}{3}$+φ)=$\frac{1}{2}$,0<φ<π,
∴φ=$\frac{π}{2}$,
∴f(x)=sin(x+$\frac{π}{2}$)=cosx.
(2)根據(jù)(1),得
f(α)=cosα=$\frac{2\sqrt{5}}{5}$,
f(β+$\frac{π}{2}$)=-$\frac{\sqrt{10}}{10}$,
∴cos($β+\frac{π}{2}$)=-sinβ=-$\frac{\sqrt{10}}{10}$,
∴sinβ=$\frac{\sqrt{10}}{10}$,
∵α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),
∴sinα=$\sqrt{1-co{s}^{2}α}=\frac{\sqrt{5}}{5}$,
cosβ=$\sqrt{1-si{n}^{2}β}=\frac{3\sqrt{10}}{10}$.
點(diǎn)評 本題考查由y=Asin(ωx+φ)的部分圖象確定解析式、函數(shù)y=Asin(ωx+φ)的圖象變換,考查函數(shù)方程思想、數(shù)形結(jié)合思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+1 | B. | 2x-1 | C. | 2x-3 | D. | 2x+7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com