求函數(shù)f(x)=3xsinx-
cosx-lnx
x
的導(dǎo)數(shù).
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:直接運(yùn)用導(dǎo)數(shù)的運(yùn)算法則直接運(yùn)算即可.
解答: 解:∵f(x)=3xsinx-
cosx-lnx
x

f′(x)=3xln3•sinx+3xcosx-
-xsinx-1-cosx+lnx
x2
點(diǎn)評(píng):本題考查基本函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:x2+y2+2x-6y-15=0與圓C2:x2+y2-4x+2y+4=0的公切線有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:2(x2+
1
x2
)-3(x+
1
x
)-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足4(n+1)(Sn+1)=(n+2)2an(n∈N+).
(1)求a1,a2的值;
(2)求an;
(3)設(shè)bn=
n+1
an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=2,從圓外的一動(dòng)點(diǎn)P向圓做切線PT,T為切點(diǎn),且|PT|=|PO|(O為坐標(biāo)原點(diǎn))
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求|PT|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1-an=n+2(n∈N*)且a1=1
(1)求a2,a3,a4的值;
(2)求{an}的通項(xiàng)公式;
(3)令bn=4an-68n,求bn的最小值及此時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)院有兩個(gè)技術(shù)骨干小組,甲組有6名男醫(yī)生,4名女醫(yī)生;乙組有2名男醫(yī)生,3名女醫(yī)生,現(xiàn)采用分層抽樣的方法,從甲、乙兩組中抽取3名醫(yī)生進(jìn)行醫(yī)療下鄉(xiāng)服務(wù).
(1)求甲、乙兩組中各抽取的人數(shù);
(2)求抽取的3人都是男醫(yī)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的兩個(gè)焦點(diǎn)為F1、F2,|F1F2|=10,P為雙曲線上的一點(diǎn),|PF1|=2|PF2|,PF1⊥PF2,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C1的參數(shù)方程為
x=t
y=
1-t2
.
(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ-ρcosθ=-1.則曲線C1與曲線C2的交點(diǎn)個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案