17.頂點在原點且焦點坐標(biāo)為(-1,0)的拋物線的標(biāo)準(zhǔn)方程是( 。
A.x2=4yB.x2=-4yC.y2=4xD.y2=-4x

分析 由焦點(-1,0),可設(shè)拋物線的方程為y2=-2px,由$\frac{p}{2}$=1可求p,即可求出拋物線的方程.

解答 解:由焦點(-1,0),可設(shè)拋物線的方程為y2=-2px
∴$\frac{p}{2}$=1
∴p=2
∴y2=-4x.
故選:D.

點評 本題主要考查了由拋物線的性質(zhì)求解拋物線的方程,解題的關(guān)鍵是由拋物線的焦點確定拋物線的開口方向,屬于基礎(chǔ)試題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列命題:
①某地2015年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如圖,則這組數(shù)據(jù)的中位數(shù)為20;
②函數(shù)f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2${\;}^{\frac{1}{8}}$)>f(log2$\frac{1}{8}$)>f[($\frac{1}{8}$)2]
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3,
其中正確命題的序號是①②(把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知α,β為銳角,且cos(α+β)=$\frac{3}{5}$,sinα=$\frac{5}{13}$,則cosβ的值為(  )
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$\frac{16}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,a,b,c分別為角A,B,C的對邊,已知tanA+tanB-$\sqrt{3}$tanAtanB=-$\sqrt{3}$,c=$\frac{7}{2}$又△ABC的面積為S=$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在矩形ABCD中,AB=2AD,E是CD的中點,以AE為折痕將△ADE向上折起,使D到P點位置,且PC=PB.
(1)若F是BP的中點,求證:CF∥平面APE;
(2)求證:平面APE⊥平面ABCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求圓O1:x2+y2+4x-4y+7=0關(guān)于直線x-2y-1=0對稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的定義域和值域.
(1)y=2arccos(x-1);
(2)y=2arccos($\frac{1}{2}$-x);
(3)y=arccos$\frac{1}{\sqrt{x}}$;
(4)y=$\sqrt{\frac{π}{3}-arccos(4-x)}$;
(5)y=arccos(x2-x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,曲線C1,C2的參數(shù)方程分別為$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t為參數(shù))和$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)).
(1)將曲線C1,C2的參數(shù)方程化為普通方程,并指出是何種曲線;
(2)以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求曲線C1,C2的交點所確定的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果f(a+b)=f(a)•f(b)(a,b∈R),且f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$=( 。
A.4026B.4028C.2013D.2014

查看答案和解析>>

同步練習(xí)冊答案