已知圓,點(diǎn),直線.

⑴求與圓相切,且與直線垂直的直線方程
⑵在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).
(1)
(2)存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù)。
⑴設(shè)所求直線方程為,即,
直線與圓相切,∴,得,
∴所求直線方程為
⑵方法1:假設(shè)存在這樣的點(diǎn),
當(dāng)為圓軸左交點(diǎn)時(shí),;
當(dāng)為圓軸右交點(diǎn)時(shí),,
依題意,,解得,(舍去),或。
下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù)。
設(shè),則, 
,
從而為常數(shù)。                                  
方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,
,將代入得,
,即
對(duì)恒成立,         
,解得(舍去),
所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù)。 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)作圓的弦,其中最長(zhǎng)的弦長(zhǎng)為,最短的弦長(zhǎng)為,則
     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知m∈R,直線l和圓C:。
(1)求直線l斜率的取值范圍;
(2)直線l能否將圓C分割成弧長(zhǎng)的比值為的兩段圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)P(-1,0)作圓C:(x- 1)2 + (y- 2)2 = 1的兩切線,設(shè)兩切點(diǎn)為AB,圓心為C,則過AB、C的圓方程是
A.x2 + (y - 1)2 =" 2" B.x2 + (y - 1)2 =" 1"
C.(x- 1)2 + y2 =" 4" D.(x- 1)2 + y2 = 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi)有兩個(gè)定點(diǎn)和動(dòng)點(diǎn)P,坐標(biāo)分別為 、,動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為曲線,曲線關(guān)于直線的對(duì)稱曲線為曲線,直線與曲線交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),△ABO的面積為,
(1)求曲線C的方程;(2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線ax+by=1與圓x2+y2=1相交,則點(diǎn)P(a,b)的位置是(  )
A.在圓上B.在圓外
C.在圓內(nèi)D.以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題




(1)求動(dòng)圓圓心的軌跡C;
(2)過點(diǎn)T(-2,0)作直線l與軌跡C交于A、B兩點(diǎn),求一點(diǎn),使得 是以點(diǎn)E為直角頂點(diǎn)的等腰直角三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x2+y2=9的內(nèi)接△ABC中,點(diǎn)A的坐標(biāo)是(-3,0),重心G的坐標(biāo)是(,求(1)直線BC的方程;(2)弦BC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,過原點(diǎn)且傾斜角為的直線交單位圓于點(diǎn),C是單位圓與軸正半軸的交點(diǎn),B是單位圓上第二象限的點(diǎn),且為正三角形。
(I)求的值;
(II)求的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案