復(fù)數(shù)z=m2
1
m+8
+i)+(6m-16)i-
m+2
m+8
.(i為虛數(shù)單位)
(1)若復(fù)數(shù)z為純虛數(shù),求實(shí)數(shù)m的值;
(2)若復(fù)數(shù)z對應(yīng)的點(diǎn)在第三象限或第四象限,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)數(shù)的基本概念,復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)復(fù)數(shù)z為純虛數(shù),復(fù)數(shù)的實(shí)部為0,虛部不為0,即可求實(shí)數(shù)m的值;
(2)若求出復(fù)數(shù)的對應(yīng)點(diǎn)的坐標(biāo),通過復(fù)數(shù)z對應(yīng)的點(diǎn)在第三象限或第四象限,求實(shí)數(shù)m的取值范圍.
解答: 解:復(fù)數(shù)z=m2
1
m+8
+i)+(6m-16)i-
m+2
m+8
.(1)若復(fù)數(shù)z為純虛數(shù),∴
m2
m+8
-
m+2
m+8
=0
m2+6m-16≠0
,
解得:m=-1.
(2)復(fù)數(shù)z對應(yīng)的點(diǎn)(
m2
m+8
-
m+2
m+8
,m2+6m-16),
復(fù)數(shù)z對應(yīng)的點(diǎn)在第三象限或第四象限,
m2
m+8
-
m+2
m+8
≠0
m2+6m-16<0

解得:m∈(-8,2)∪{-1}.
點(diǎn)評:本題考查復(fù)數(shù)的基本概念的應(yīng)用,注意復(fù)數(shù)是純虛數(shù)時,復(fù)數(shù)的虛部不為0,考查基本知識的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20和16的等比中項(xiàng)是( 。
A、18
B、320
C、8
5
D、-8
5
或8
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,若集合S={-2,0,1},則(  )
A、i2015∈S
B、-2i2014∈S
C、i2013∈S
D、i(i-
1
i
)∈S

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)镽,對任意x、y滿足下列條件f(x+y)=f(x)f(y)-f(x)-f(y)+2且f(1)=3,當(dāng)x>0時,f(x)>2,記g(x)=f(x)-1.
(1)求證:g(x+y)=g(x)g(y);
(2)若對x∈R都有g(shù)(x)≠0,求證g(x)>0,并證明g(x)是增函數(shù);
(3)記an=f(n),求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在半徑為4,圓心角為變量2θ(0<θ<2π)的扇形OAB內(nèi)作一內(nèi)切圓P,再在扇形內(nèi)作一個與扇形兩半徑相內(nèi)切并與圓P外切的小圓Q,記圓Q的半徑為y.
(1)試將y表示成θ的函數(shù);
(2)求圓Q的半徑y(tǒng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某校組織的一次籃球定點(diǎn)投籃測試中,規(guī)定每人最多投3次,每次投籃的結(jié)果相互獨(dú)立.在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認(rèn)為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投;方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(Ⅰ)甲同學(xué)選擇方案1.求甲同學(xué)測試結(jié)束后所得總分等于4的概率;求甲同學(xué)測試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(Ⅱ)你認(rèn)為甲同學(xué)選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<β<α<
π
2
,且cosα=
5
13
,cos(α-β)=
4
5

(1)求sin(α-β)的值;
(2)求cos(α+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個內(nèi)角A,B,C,向量
m
=(2cosA,sinA),
n
=(cosB,-2sinB),且
m
n
=1
(1)求角C的大小:
(2)若△ABC的三邊長構(gòu)成公差為4的等差數(shù)列,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B,C是圓O上三個點(diǎn),AD是∠BAC的平分線,交圓O于D,過B做直線BE交AD延長線于E,使BD平分∠EBC.
(1)求證:BE是圓O的切線;
(2)若AE=6,AB=4,BD=3,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案