分析 運用等差數(shù)列的通項,求得an=3n-63,再由求和公式,可得Sn=$\frac{1}{2}$n(3n-123),由bn=|3n-63|,可得數(shù)列{bn}前30項和為S30-2S21,計算即可得到所求值.
解答 解:a1=-60,an+1=an+3,
即有an=a1+3(n-1)=-60+3n-3
=3n-63,
當n≤21時,an≤0,
當n≥22時,an>0,
設數(shù)列{an}的前n項和為Sn,
即有Sn=$\frac{1}{2}$n(3n-123),
由bn=|3n-63|,
則數(shù)列{bn}前30項和為
S30-S21-S21=S30-2S21=$\frac{1}{2}$×30×(90-123)-2×$\frac{1}{2}$×21×(63-123)=765.
故答案為:765.
點評 本題考查等差數(shù)列的通項和求和公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 45 | ||
乙班 | 20 | ||
合計 | 30 | 105 |
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com