12.△ABC的三邊長(zhǎng)a,b,c.且a+b+c=1.證明:5(a2+b2+c2)+18abc≥$\frac{7}{3}$.

分析 通過(guò)變形、化簡(jiǎn)可知5(a2+b2+c2)+18abc=$\frac{205}{81}$-18($\frac{5}{9}$-a)($\frac{5}{9}$-b)($\frac{5}{9}$-c),通過(guò)$\frac{5}{9}$-a>0、$\frac{5}{9}$-b>0、$\frac{5}{9}$-c>0,及均值不等式計(jì)算即得結(jié)論.

解答 證明:5(a2+b2+c2)+18abc
=5[(a+b+c)2-2(ab+bc+ca)]+18abc
=5[12-2(ab+bc+ca)]+18abc
=5+18[abc-$\frac{5}{9}$(ab+bc+ca)]
=5+18[(a-$\frac{5}{9}$)(b-$\frac{5}{9}$)(c-$\frac{5}{9}$)-$(\frac{5}{9})^{2}$+$(\frac{5}{9})^{3}$]
=$\frac{205}{81}$-18($\frac{5}{9}$-a)($\frac{5}{9}$-b)($\frac{5}{9}$-c),
∵a、b、c為三角形三邊,且a+b+c=1,
∴$\frac{5}{9}$-a>0,$\frac{5}{9}$-b>0,$\frac{5}{9}$-c>0,
利用均值不等式可知:$\frac{205}{81}$-18($\frac{5}{9}$-a)($\frac{5}{9}$-b)($\frac{5}{9}$-c)
≥$\frac{205}{81}$-18•$(\frac{3•\frac{5}{9}-a-b-c}{3})^{3}$
=$\frac{205}{81}$-18•$(\frac{\frac{5}{3}-1}{3})^{3}$
=$\frac{7}{3}$,
∴5(a2+b2+c2)+18abc≥$\frac{7}{3}$.

點(diǎn)評(píng) 本題考查不等式的證明,利用均值不等式是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)(x∈[0,π]),則f(x)的遞減區(qū)間是[$\frac{π}{3}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球不喜愛(ài)打籃球合計(jì)
男生20525
女生101525
合計(jì)302050
(1)用分層抽樣的方法在喜歡打籃球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),由公式K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$計(jì)算出K2≈8.333,那么你能否有99.5%的把握認(rèn)為是否喜歡打籃球與性別有關(guān)?
附臨界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.?dāng)?shù)列{an}中,a1=-60,an+1=an+3,若數(shù)列{bn}滿足bn=|an|,則數(shù)列{bn}前30項(xiàng)和為765.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1(x≤2)}\\{1(x>2)}\end{array}\right.$的值域是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知E、F、G、H分別是空間四邊形ABCD各邊AB、AD、CB、CD上的點(diǎn),并且有$\frac{AE}{EB}$=$\frac{CG}{GB}$,$\frac{AF}{FD}$=$\frac{CH}{HD}$,試證EF、GH、BD共點(diǎn)或兩兩平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知拋物線y=x2-1上一點(diǎn)B(-1,0),若拋物線上存在兩點(diǎn)P,Q,且使得PQ⊥PB,則Q點(diǎn)橫坐標(biāo)的取值范圍為(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=2x,它的反函數(shù)是f-1(x),a=f-1(3),b=f-1(4),c=f-1(π),則下面關(guān)系式中正確的是( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}滿足an+1=2an+2n-1(n∈N*),且$\{\frac{{{a_n}+λ}}{2^n}\}$為等差數(shù)列,則λ的值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案