2.已知α,β為銳角,cosα=$\frac{1}{7},cos(α+β)=-\frac{11}{14}$,求cosβ的值及β的大小.

分析 由題意和同角三角函數(shù)基本關(guān)系可得sinα和sin(α+β),代入cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα,計算可得.

解答 解:∵α,β為銳角,cosα=$\frac{1}{7},cos(α+β)=-\frac{11}{14}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4\sqrt{3}}{7}$,同理sin(α+β)=$\frac{5\sqrt{3}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$-\frac{11}{14}$×$\frac{1}{7}$+$\frac{4\sqrt{3}}{7}$×$\frac{5\sqrt{3}}{14}$=$\frac{1}{2}$,∴β=$\frac{π}{3}$

點評 本題考查兩角和與差的余弦公式,涉及同角三角函數(shù)基本關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點A(-1,0),B(1,0)和動點P滿足:存在正常數(shù)m,使得$\overrightarrow{PA}$•$\overrightarrow{PB}$+|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|=2m.
(1)求證:動點P的軌跡C為橢圓,并寫出此橢圓方程;
(2)設(shè)直線l:y=x+1與曲線C相交于兩點E,F(xiàn),且與y軸的交點為D.若$\overrightarrow{DE}$=-(2+$\sqrt{3}$)$\overrightarrow{DF}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)y=Asin(ωx+φ)(A>0,|φ|<π)的一段圖象如圖所示.
(1)求該函數(shù)的解析式;
(2)求該函數(shù)的單調(diào)增區(qū)間;
(3)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在三角形ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{a}{sinA}$=$\frac{\sqrt{3}cosB}$
(1)求角B;
(2)若角A是三角形ABC的最大角,求cos(B+C)+$\sqrt{3}$sinA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期為π,且f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.
(1)求ω和φ的值;     
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若x∈[0,$\frac{π}{2}$],求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四組函數(shù)中,表示相同函數(shù)的一組是( 。
A.f(x)=1,g(x)=$\frac{x}{x}$B.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.計算$\frac{2i}{1-i}$(i為虛數(shù)單位)等于( 。
A.1-iB.-1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)的定義域為R,其圖象關(guān)于原點中心對稱,且x>0時,f(x)=x+$\frac{1}{x}$+2.
(1)求f(x)在x≤-1時的解析式,并說明在(0,+∞)上f(x)的單調(diào)性:(不需證明)
(2)記f(x)在x∈[t,t+1]上的最大值為g(t),求g(t)的表達(dá)式(其中常數(shù) t>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.解答題:己知f(x)=1+1ogx3,g(x)=21ogx2,試比較f(x)與g(x)的大小.

查看答案和解析>>

同步練習(xí)冊答案