已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對(duì)稱中心為M(x0,y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求得f(
1
2013
)+f(
2
2013
)+…+f(
4024
2013
)+f(
4025
2013
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意對(duì)已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(diǎn)(1,-2)對(duì)稱,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2012對(duì)-4和一個(gè)f(1)=-2,可得答案.
解答: 解:由題意f(x)=x3-3x2,則f′(x)=3x2-6x,f″(x)=6x-6,
由f″(x0)=0得x0=1,而f(1)=-2,故函數(shù)f(x)=x3-3x2關(guān)于點(diǎn)(1,-2)對(duì)稱,即f(x)+f(2-x)=-4.
所以f(
1
2013
)+f(
4025
2013
)=-4
,…f(
2012
2013
)+f(
2014
2013
)=-4
,f(
2013
2013
)=f(1)=-2
,
所以f(
1
2013
)+f(
2
2013
)+…f(
4024
2013
)+f(
4025
2013
)
=-4×2012+(-2)=-8050,
故答案為:-8050.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的基本運(yùn)算,利用條件求出函數(shù)的對(duì)稱中心是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,且a1+a3=-3,a2a4=4,則公比q的值是(  )
A、
2
B、-2
C、±
2
D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(1)求異面直線D1E與A1D所成角.
(2)(文)當(dāng)E為AB中點(diǎn)時(shí),求點(diǎn)E到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
1
x
,g(x)=alnx(a∈R)
(1)a≥-2時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個(gè)極值點(diǎn)為x1,x2,其中x1∈(0,
1
2
],求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=1+t
y=3-2t
(t為參數(shù)且t∈R)與曲線C:
x=cosα
y=2+cos2α
(α是參數(shù)且α∈[0,2π)),則直線l與曲線C的交點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)平面垂直,下列命題:
①一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的任意一條直線;
②一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面的無數(shù)條直線;
③一個(gè)平面內(nèi)的任一條直線必垂直于另一個(gè)平面;
④過一個(gè)平面內(nèi)任意一點(diǎn)作交線的垂線,則垂線必垂直于另一個(gè)平面.
其中正確的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一根長為2米的木棒AB斜靠在墻壁AC上,∠ABC=60°,若AB滑動(dòng)至DE位置,
AD=(
3
-
2
) 
米,問木棒AB中點(diǎn)O所經(jīng)過的路程為
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,60°的二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則CD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、β是不重合的平面,a、b、c是不重合的直線,給出下列命題:
a⊥α
a?β
a⊥b
c⊥b
⇒a∥c
a∥α
b⊥a
⇒b⊥α

其中正確命題的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案