【題目】填空:

1)如果,且,則是第________象限角;

2)如果,且,則是第________象限角;

3)如果,且,則是第________象限角;

4)如果,且,則是第________象限角.

【答案】

【解析】

1)由三角函數(shù)的正負(fù),判斷角所在的象限;

2)由三角函數(shù)的正負(fù),判斷角所在的象限;

3)由三角函數(shù)的正負(fù),判斷角所在的象限;

4)由三角函數(shù)的正負(fù),判斷角所在的象限.

1,角在第一,二象限和軸非負(fù)半軸,

,角在第二,第三象限和軸非正半軸,

綜上可知滿足,且,則是第二象限;

(2),角在第一,三象限,

,角在第二,第三象限和軸非正半軸,

綜上可知滿足,且,則是第三象限角;

(3),角在第三,四象限和軸非正半軸,

,角在第二,四象限,

綜上可知,滿足,且,則是第四象限;/span>

(4),角在第一,第四象限和軸非負(fù)半軸,

,角在第三,四象限和軸非正半軸,

綜上可知,滿足,且,則是第四象限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司擬推出某種意外傷害險(xiǎn),每位參保人交付元參保費(fèi),出險(xiǎn)時(shí)可獲得萬(wàn)元的賠付,已知一年中的出險(xiǎn)率為,現(xiàn)有人參保.

1)求保險(xiǎn)公司獲利在(單位:萬(wàn)元)范圍內(nèi)的概率(結(jié)果保留小數(shù)點(diǎn)后三位);

2)求保險(xiǎn)公司虧本的概率.(結(jié)果保留小數(shù)點(diǎn)后三位)

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的圖象與直線沒(méi)有交點(diǎn),求的取值范圍;

2)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為,將沿對(duì)角線折起,使平面平面,得到如圖所示的三棱錐,若邊的中點(diǎn),分別為上的動(dòng)點(diǎn)(不包括端點(diǎn)),且,設(shè),則三棱錐的體積取得最大值時(shí),三棱錐的內(nèi)切球的半徑為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,拋物線與橢圓在第一線象限的交點(diǎn)為

1)求曲線、的方程;

2)在拋物線上任取一點(diǎn),在點(diǎn)處作拋物線的切線,若橢圓上存在兩點(diǎn)關(guān)于直線對(duì)稱,求點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果有一天我們分居異面直線的兩頭,那我一定穿越時(shí)空的阻隔,畫條公垂線向你沖來(lái),一刻也不愿逗留.如圖1所示,在梯形中,//,且,,分別延長(zhǎng)兩腰交于點(diǎn),點(diǎn)為線段上的一點(diǎn),將沿折起到的位置,使,如圖2所示.

(1)求證:;

(2)若,四棱錐的體積為,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列說(shuō)法是否正確,若錯(cuò)誤,請(qǐng)舉出反例

1)互斥的事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件;

2)互斥的事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件;

3)事件與事件B中至少有一個(gè)發(fā)生的概率一定比B中恰有一個(gè)發(fā)生的概率大;

4)事件與事件B同時(shí)發(fā)生的概率一定比B中恰有一個(gè)發(fā)生的概率小.

查看答案和解析>>

同步練習(xí)冊(cè)答案