5.已知正方形的中心G(2,1),正方形有一邊所在直線方程是l:x-y+1=0,求其它三邊所在直線的方程.

分析 根據(jù)直線的位置關(guān)系設(shè)出直線方程,根據(jù)G到四邊的距離相等列方程解出.

解答 解:設(shè)與l平行的邊所在直線方程為x-y+a=0(a≠1),與l垂直的兩邊所在直線方程分別為x+y+b=0,x+y+c=0,
則G到四條直線的距離相等,∴$\frac{2}{\sqrt{2}}$=$\frac{|1+a|}{\sqrt{2}}$=$\frac{|3+b|}{\sqrt{2}}$=$\frac{|3+c|}{\sqrt{2}}$,解得a=-3,b=-1,c=-5.
∴其余三邊所在直線方程分別為x-y-3=0,x+y-1=0,x+y-5=0.

點(diǎn)評(píng) 本題考查了直線的位置關(guān)系與斜率的關(guān)系,點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△OAB中,已知P為線段AB上一點(diǎn),$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,求x,y的值;
(2)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如果關(guān)于x的不等式ax2-丨x+1丨+2a<0的解集為空集,則實(shí)數(shù)的取值范圍是( 。
A.[$\frac{1+\sqrt{3}}{4}$,+∞)B.[2,+∞)C.[$\frac{\sqrt{3}-1}{4}$,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.己知直線2x+y-8=0與直線x-2y+1=0交于點(diǎn)P.
(1)求過點(diǎn)P且平行于直線4x-3y-7=0的直線11的方程;(結(jié)果都寫成一般方程形式)
(2)求過點(diǎn)P的所有直線中使原點(diǎn)O到此直線的距離最大的直線12的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線a⊥直線b,b⊥直線c,c⊥a,直線l與a,b所成的角分別為45°,60°,則l與c所成的角為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,四邊形ABCD中,AB=1,AD=2,BC=DC,∠DAB=$\frac{π}{3}$,∠DCB=$\frac{π}{2}$,則$\overrightarrow{AC}$•$\overrightarrow{CD}$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若(x+1)${\;}^{-\frac{2}{3}}$<(3-2x)${\;}^{-\frac{2}{3}}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y-2≥0}\\{x-2≤0}\\{y+1≥0}\end{array}\right.$,則z=x+3y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若復(fù)數(shù)z滿足z(1+i)=3+4i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)處于第一象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案