【題目】△ABC中,D為邊BC上的一點,BD=33,sinB= ,cos∠ADC= ,求AD.

【答案】解:由cos∠ADC= >0,則∠ADC< ,
又由知B<∠ADC可得B< ,
由sinB= ,可得cosB= ,
又由cos∠ADC= ,可得sin∠ADC=
從而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB= =
由正弦定理得
所以AD= =
【解析】先由cos∠ADC= 確定角ADC的范圍,因為∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.
【考點精析】解答此題的關鍵在于理解同角三角函數(shù)基本關系的運用的相關知識,掌握同角三角函數(shù)的基本關系:;;(3) 倒數(shù)關系:,以及對正弦定理的定義的理解,了解正弦定理:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,θ∈[0,2π)
(1)若函數(shù)f(x)是偶函數(shù):①求tanθ的值;②求 的值.
(2)若f(x)在 上是單調(diào)函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 點M(0,2)關于直線y=﹣x的對稱點在橢圓C上,且△MF1F2為正三角形.
(1)求橢圓C的方程;
(2)垂直于x軸的直線與橢圓C交于A,B兩點,過點P(4,0)的直線PB交橢圓C于另一點E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖示,A,B分別是橢圓C: (a>b>0)的左右頂點,F(xiàn)為其右焦點,2是|AF與|FB|的等差中項, 是|AF|與|FB|的等比中項.點P是橢圓C上異于A、B的任一動點,過點A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點A,M,連接FM交直線l于點Q.

(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個定點N,使得直線PQ必過該定點N?若存在,求出N點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱錐A﹣BCD的側(cè)棱長為2,底面BCD的邊長為2 ,E,分別為BC,BD的中點,則三棱錐A﹣BEF的外接球的半徑R= , 內(nèi)切球半徑r=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的頂點B(﹣1,﹣3),邊AB上的高CE所在直線的方程為4x+3y﹣7=0,BC邊上中線AD所在的直線方程為x﹣3y﹣3=0.
(1)求點C的坐標;
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A,B是非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射,設f:x→ 是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B=;②若B={1,2},則A∩B=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 過點 ,離心率為 ,點F1 , F2分別為其左、右焦點.
(1)求橢圓E的標準方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點P,Q,且 ?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形ABCD(如圖1),AB=4,AD=2,∠DAB=60°,E為AB的中點,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F(xiàn)是線段A1C的中點(如圖2).
(1)求證:BF∥面A1DE;
(2)求證:面A1DE⊥面DEBC;
(3)求二面角A1﹣DC﹣E的正切值.

查看答案和解析>>

同步練習冊答案