4.直線l1⊥l2,若l1的傾斜角為30°,則l2的傾斜角為120°.

分析 由題意,求出直線l2的傾斜角即可.

解答 解:∵直線l1的傾斜角為30°,直線l1⊥l2
∴直線l2的傾斜角是α=30°+90°=120°,
故答案為:120°.

點(diǎn)評(píng) 本題考查了求直線的傾斜角的問題,是容易題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線3x+4y-5=0的傾斜角為α,則$sin(α-\frac{π}{6})$=(  )
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{-3\sqrt{3}-4}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={x|y=$\frac{1}{\sqrt{|x|-1}}$,x∈R},B={y|y=2x2,x∈R},則(∁UA)∩B=(  )
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)f(x),g(x)分別為R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=ex則三個(gè)數(shù)f(2),f(3),g(0)的大小關(guān)系為g(0)<f(2)<f(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足Sn=$\frac{{n}^{2}}{2n-1}$an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)將數(shù)列{an}的項(xiàng)按上小下大,左小右大的原則排列成一個(gè)如圖所示的三角形數(shù)陣,那么2015是否在該數(shù)陣中,若在,排在了第幾行第幾列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,某炮兵陣地位于A點(diǎn),兩觀察所分別位于C,D兩點(diǎn).已知△ACD為正三角形,且DC=$\sqrt{3}$ km,當(dāng)目標(biāo)出現(xiàn)在B點(diǎn)時(shí),測(cè)得∠BCD=75°,∠CDB=45°,求炮兵陣地與目標(biāo)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A滿足條件{1,2}⊆A?{1,2,3,4,5},則集合A的個(gè)數(shù)有( 。
A.8B.7C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列說法正確的序號(hào)有(2).
(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),則這兩個(gè)平面重合.
(2)m,n為異面直線,過空間任意一點(diǎn)P,一定能作一條直線l與m,n都垂直.
(3)m,n為異面直線,過空間任意一點(diǎn)P,一定能作一條直線l與m,n都相交.
(4)m,n為異面直線,過空間任意一點(diǎn)P,一定存在與直線m,n都平行的平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.不用計(jì)算器求下列各式的值:
(1)0.027${\;}^{-\frac{1}{3}}$+($\sqrt{8}$)${\;}^{\frac{4}{3}}$-3-1+($\sqrt{2}$-1)0
(2)log3(9×272)+log26-log23+log43×log3 16.

查看答案和解析>>

同步練習(xí)冊(cè)答案