9.如圖,某炮兵陣地位于A點(diǎn),兩觀察所分別位于C,D兩點(diǎn).已知△ACD為正三角形,且DC=$\sqrt{3}$ km,當(dāng)目標(biāo)出現(xiàn)在B點(diǎn)時(shí),測(cè)得∠BCD=75°,∠CDB=45°,求炮兵陣地與目標(biāo)的距離.

分析 由三角形內(nèi)角和定理得出∠CBD=60°,在△BCD中,由正弦定理得出BD,再在△ABD中利用余弦定理解出AB即可.

解答 解:∠CBD=180°-∠CDB-∠BCD=180°-45°-75°=60°,
在△BCD中,由正弦定理,得:
BD=$\frac{CDsin75°}{sin60°}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$.
在△ABD中,∠ADB=45°+60°=105°,
由余弦定理,得AB2=AD2+BD2-2AD•BDcos105°
=3+($\frac{\sqrt{6}+\sqrt{2}}{2}$)2-2×$\sqrt{3}$×$\frac{\sqrt{6}+\sqrt{2}}{2}$×$\frac{\sqrt{2}-\sqrt{6}}{4}$=5+2$\sqrt{3}$.
∴AB=$\sqrt{5+2\sqrt{3}}$.
答:炮兵陣地與目標(biāo)的距離為$\sqrt{5+2\sqrt{3}}$km

點(diǎn)評(píng) 本題考查了解三角形的實(shí)際應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義:若復(fù)數(shù)z與z1滿足z•z1=1,則稱復(fù)數(shù)z與z1互為倒數(shù),已知復(fù)數(shù)z=i(2+3i),則復(fù)數(shù)z的倒數(shù)z1為(  )
A.-$\frac{3}{13}+\frac{2}{13}$iB.-$\frac{3}{13}-\frac{2}{13}$iC.$\frac{3}{13}+\frac{2}{13}$iD.$\frac{3}{13}-\frac{2}{13}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x-1)=x2+(2a-2)x+3-2a.
(1)若函數(shù)f(x)在[-5,5]上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
(2)求a的值,使f(x)在區(qū)間[-5,5]上的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦點(diǎn),過點(diǎn)M且斜率為k的直線l與橢圓C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)若M(0,$\sqrt{5}$),橢圓與x軸正半軸、y軸正半軸交點(diǎn)分別為P、Q,問:是否存在常數(shù)k,使向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{pQ}$共線;
(2)若M為橢圓C的右焦點(diǎn),且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求k的值;
(3)若M為橢圓C的左頂點(diǎn),Q為線段AB的垂直平分線與y軸的交點(diǎn),且$\overrightarrow{QA}•\overrightarrow{QB}$=4,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線l1⊥l2,若l1的傾斜角為30°,則l2的傾斜角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知兩個(gè)不同的平面α、β和兩條不重合的直線m、n,有下列四個(gè)命題:
①若m∥n,m⊥α,則n⊥α;       
②若m⊥α,m⊥β,則α∥β;
③若m∥n,n?α,則m∥α;        
④若m∥α,α∩β=n,則m∥n.
其中正確命題的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)+f(x)=0,且當(dāng)x>0時(shí),f(x)=x2-2
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象并指出它的單調(diào)區(qū)間.
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=ex(x2-(2a+4)x+6a+4),討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,且滿足$\frac{cosA}{cosB}=-\frac{a}{b+2c}$.
(1)求角A的大。
(2)求sinBsinC的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案