定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),且在[0,1]上是增函數(shù),則有( 。
A、f(
1
4
)<f(-
1
4
)<f(
3
2
)
B、f(-
1
4
)<f(
1
4
)<f(
3
2
)
C、f(
1
4
)<f(
3
2
)<f(-
1
4
)
D、f(-
1
4
)<f(
3
2
)<f(
1
4
)
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知分析出函數(shù)的周期性,結(jié)合函數(shù)的奇偶性和單調(diào)性,將三個(gè)自變量化為同一單調(diào)區(qū)間可比較得到答案.
解答: 解:定義在R上的奇函數(shù)f(x)圖象必過原點(diǎn)(0,0),
又∵函數(shù)f(x)滿足f(x-2)=-f(x),
∴f(x-4)=-f(x-2)=f(x),
∴函數(shù)f(x)是周期為4的周期函數(shù),
∴f(
3
2
)=-f(-
1
2
)=f(
1
2
),
又∵函數(shù)f(x)在[0,1]上是增函數(shù),
∴f(-
1
4
)=-f(
1
4
)<0<f(
1
4
)<f(
1
2
),
f(-
1
4
)<f(
1
4
)<f(
3
2
)

故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,函數(shù)的單調(diào)性,函數(shù)的周期性,是函數(shù)圖象和性質(zhì)的簡單綜合應(yīng)用,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足不等式組
2-x≤0
y≤x
2x+y+k≤0
(其中k為常數(shù)),若z=x+3y的最大值為5,則k的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
4
)=
1
2
,則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l:y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點(diǎn),且A、B兩點(diǎn)在拋物線C準(zhǔn)線上的射影分別是M、N,若|AM|=2|BN|,則k的值是( 。
A、
1
3
B、
2
3
C、
2
3
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果i=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-1)10的展開式中第6項(xiàng)系的系數(shù)是(  )
A、-
C
5
10
B、
C
5
10
C、-
C
6
10
D、
C
6
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x≥1
x+y≤4
x-y-2≤0
,則z=2x+y的最大值是( 。
A、1B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,又拋物線C2:x2=2py(p>0)通徑所在直線被橢圓C1所截得的線段長為
4
3
33

(1)求橢圓C1和拋物線C2的方程;
(2)過點(diǎn)A的直線L與拋物線C2交于B、C兩點(diǎn),拋物線C2在點(diǎn)B、C處的切線分別為l1、l2,且l1與l2交于點(diǎn)P.是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè)(不必求出點(diǎn)P的坐標(biāo)),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
①函數(shù)f(x)=(
x
)2
與g(x)=x表示的是同一個(gè)函數(shù);
②若函數(shù)f(x)的定義域?yàn)閇1,2],則函數(shù)f(x+1)的定義域?yàn)閇2,3];
③若函數(shù)f(x)的值域是[1,2],則函數(shù)f(x+1)的值域?yàn)閇2,3];
④若函數(shù)f(x)=x2+mx+1是偶函數(shù),則函數(shù)f(x)的減區(qū)間為(-∞,0].
其中正確的命題有
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案