分析 (1)由題意和正弦定理求出sinA、sinB、sinC,代入已知的式子化簡(jiǎn),再由余弦定理求出cosC的值,即可求出角C的值;
(2)由(1)和條件求出c,利用余弦定理列出方程,化簡(jiǎn)后利用基本不等式求出ab的最大值,代入△ABC面積的公式求出最大值.
解答 解:(1)由題意和正弦定理得,$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2\sqrt{2}$,
則sinA=$\frac{a}{2\sqrt{2}}$,sinB=$\frac{2\sqrt{2}}$,sinC=$\frac{c}{2\sqrt{2}}$,
代入2$\sqrt{2}$(sin2A-sin2C)=(a-b)sinB得,
a2-c2=ab-b2,即a2+b2-c2=ab,
由余弦定理得,cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
又0<C<π,則C=$\frac{π}{3}$;
(2)由(1)可得,$\frac{c}{sin\frac{π}{3}}=2\sqrt{2}$,則c=$2\sqrt{2}×\frac{\sqrt{3}}{2}$=$\sqrt{6}$,
代入a2+b2-c2=ab可得,a2+b2-6=ab,
即ab+6=a2+b2≥2ab,解得ab≤6,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào),
所以△ABC面積S=$\frac{1}{2}absinC$=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}×6$=$\frac{3\sqrt{3}}{2}$,
即△ABC面積的最大值是$\frac{3\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查了正弦、余弦定理,三角形的面積公式,以及基本不等式求最值問(wèn)題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
喜歡數(shù)學(xué)課程 | 不喜歡數(shù)學(xué)課程 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) | 40 |
P(K2≥k0) | 0.5 | 0.4 | 0.25 | 0.15 | 0.1 | 0.01 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | π | C. | -π | D. | -2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | -4 | C. | 9 | D. | -9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com