20.已知3≤2x+y≤9,且6≤x-y≤9,則z=x+2y的最小值為-6.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直線y=$-\frac{1}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線經(jīng)過(guò)點(diǎn)A時(shí),
直線y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此時(shí)z最小,
由$\left\{\begin{array}{l}{x-y=9}\\{2x+y=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=-5}\end{array}\right.$,即A(4,-5)
此時(shí)z=4+2×(-5)=-6.
故答案為:-6.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在如圖所示的幾何體ABCDEFG中,四邊形ABCD是邊長(zhǎng)為4的正方形,DE⊥平面ABCD,DE∥AF∥BG,H是DE的中點(diǎn),AC與BD相交于N,DE=2AF=2BG=4
(Ⅰ)在FH上求一點(diǎn)P,使NP∥平面EFC;
(Ⅱ)求二面角E-FC-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)AB=6,側(cè)棱長(zhǎng)AA1=2$\sqrt{7}$,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O上任意一點(diǎn),有以下判斷:
①PE的長(zhǎng)的最大值是為9;
②三棱錐P-EBC的體積的最大值是$\frac{32}{3}$;
③三棱錐P-AEC1的體積的最大值是20;
④過(guò)點(diǎn)E的平面截球O所得截面面積最大時(shí),B1C垂直于該截面,
其中正確的命題是①③( 把你認(rèn)為正確的都寫(xiě)上 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=ex,則f(-1)=(  )
A.$\frac{1}{e}$B.-$\frac{1}{e}$C.eD.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.下列說(shuō)法中錯(cuò)誤的有③④.
①已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-2},x≥0}\\{{2}^{-x},x<0}\end{array}\right.$,則f[f(-2)]=4;
②已知O為平面內(nèi)任意一點(diǎn),A,B,C是平面內(nèi)互不相同的三點(diǎn),且滿足$\overrightarrow{OA}=x\overrightarrow{OB}+y\overrightarrow{OC}$,x+y=1,則A,B,C三點(diǎn)共線;
③已知平面α∩平面β=l,直線a?α且a⊥直線l,直線b?β,則a⊥b是α⊥β的充要條件;
④若△ABC是銳角三角形,則cosA<cosB;
⑤若f(x)=sin(2x+φ)-cos(2x-φ)的最大值為1,且φ∈(0,$\frac{π}{2}$),則f(x)的單調(diào)增區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲乙兩個(gè)學(xué)校高三年級(jí)分別有1100人,1000人,為了了解兩個(gè)學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)二?荚嚨臄(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)231015
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1298
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩個(gè)學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率;
(Ⅲ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)右面2×2列聯(lián)表,并判斷是否有97.5%的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.050.025
k2.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且2$\sqrt{2}$(sin2A-sin2C)=(a-b)sinB,$\frac{c}{sinC}$=2$\sqrt{2}$
(1)求角C;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={1,2},B={a|a=2k-1,k∈A},則A∪B=( 。
A.{1}B.{1,2}C.{1,2,3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)直線x-2y+1=0的傾斜角為α,則cos2α+sin2α的值為$\frac{8}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案