在區(qū)間(0,1)上單調(diào)遞減的函數(shù)是(  )
A、y=x
1
2
B、y=log2(x+1)
C、y=2x+1
D、y=|x-1|
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:運(yùn)用常見函數(shù)的單調(diào)性,即可得到在區(qū)間(0,1)上單調(diào)遞減的函數(shù).
解答: 解:對(duì)于A.函數(shù)y在[0,+∞)是遞增,則A不滿足條件;
對(duì)于B.由對(duì)數(shù)函數(shù)的底數(shù)大于1,為增函數(shù),可得函數(shù)y在(0,1)上遞增,則B不滿足條件;
對(duì)于C.由指數(shù)函數(shù)的底數(shù)大于1,為增函數(shù),可得函數(shù)y在(0,1)上遞增,則C不滿足條件;
對(duì)于D.函數(shù)關(guān)于x=1對(duì)稱,且在(-∞,1)遞減,則在(0,1)遞減,則D滿足條件.
故選D.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性的判斷,考查常見函數(shù)的單調(diào)性,考查判斷能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)A(2,0)與圓x2+y2=16相內(nèi)切的圓的圓心P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對(duì)任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個(gè)寬度為d的通道.給出下列函數(shù):
f(x)=
3
2x-1
;         ②f(x)=
x2-1
;     ③f(x)=-
1
2
sin(πx+
1
3
)+1
;
f(x)=
1+lnx
x
;        ⑤f(x)=(
1
e
)x+4

其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有
 
 (寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
cosπx,x>0
f(x+1),x<0
,則f(-
4
3
)
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的解析式
(1)設(shè)函數(shù)y=g(x)是定義在R上的函數(shù),對(duì)任意實(shí)數(shù)x,g(1-x)=x2-3x+3,求函數(shù)y=g(x)的解析式;
(2)已知定義在R上的函數(shù)y=f(x)是偶函數(shù),且x≥0時(shí),f(x)=ln(x2-2x+2),求函數(shù)y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D是原點(diǎn)O,A(1,0),B(1,2),C(0,2)四點(diǎn)構(gòu)成的矩形區(qū)域,E是滿足(x-1)2+(y-2)2≥1所表示的平面區(qū)域,從D內(nèi)隨機(jī)取一個(gè)點(diǎn)M,則點(diǎn)M也在E內(nèi)的概率為(  )
A、
8-π
8
B、
4-π
4
C、
π
8
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=3x+3-x(x<0)的最小值為2;
②在數(shù)列{an}中,a1=1,Sn是前n項(xiàng)和,且滿足Sn+1=
1
2
Sn+2,則數(shù)列{an}是等比數(shù)列;
③若f(x+2)+
1
f(x)
=0,則函數(shù)y=f(x)是以4為周期的周期函數(shù);
④若函數(shù)f(x)=x3+ax2+2的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,則a的值為-3,
則正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足
xy≥0
|x+y|≤1
,使z=ax+y取得最大值的最優(yōu)解有兩個(gè),則z=ax+y+1的最小值為( 。
A、0B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a>-1”是“函數(shù)f(x)=x+a|x-1|在R上是增加的”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案