4.巴蜀中學(xué)的“開心農(nóng)場”有一如圖所示的7塊地方,現(xiàn)準(zhǔn)備在這7塊地方種植不同的植物,要求相鄰地方不能種同一植物,現(xiàn)在只有4種不同的植物可供選擇,每種植物有足量的數(shù)量,恰好把4種不同植物都用上的不同種植方法有576種.

分析 先種植1區(qū)有4種,再種植2去有3種,3,4,5,6區(qū)各有2種,若2,6區(qū)種植的相同,則7區(qū)有2種,若2,6區(qū)種植的不同,則7區(qū)只有1種,根據(jù)分類和分步計數(shù)原理即可求出.

解答 解:先種植1區(qū)有4種,再種植2去有3種,3,4,5,6區(qū)各有2種,若2,6區(qū)種植的相同,則7區(qū)有2種,若2,6區(qū)種植的不同,則7區(qū)只有1種,
故有4×3×24×(2+1)=576種,
故答案為:576.

點評 本題主要考查分布計數(shù)原理和分類計數(shù)原理的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=xex-a有兩個零點,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{e}$,+∞)B.(0,$\frac{1}{e}$)C.(-$\frac{1}{e}$,+∞)D.(-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y-2≤0}\\{x-y+1≥0}\\{x-2y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-1}$的最小值是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面向量$\overrightarrow a=({3,6}),\overrightarrow b=({x,-1})$,如果$\overrightarrow a∥\overrightarrow b$,那么$|\overrightarrow b|$=( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角梯形BCEF中,BF∥EC,且EF=$\frac{1}{2}$BF=$\frac{1}{3}$CE,EF⊥EC,A為BF的中點,ED=$\frac{1}{3}$EC,現(xiàn)沿直線AD將四邊形ADEF折起,如圖2,使得平面ADEF⊥平面ABCD,M為CE的中點.

(1)證明:BM∥平面ADEF;
(2)求平面ADEF與平面BEC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=tan(ωx-$\frac{π}{5}$)(ω>0)的最小正周期為2π.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求不等式f(x)>-1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某微信群中甲、乙、丙、丁、卯五名成員同時搶4個紅包,每人最多搶一個,且紅包被全部搶光,4個紅包中有兩個2元,兩個3元(紅包中金額相同視為相同的紅包),則甲乙兩人都搶到紅包的情況有( 。
A.35種B.24種C.18種D.9種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三角形的頂點為A(0,2)、B(-3,1)、C(-3,4),求三角形三邊所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求(1-x)6(1+x)4展開式中x3的系數(shù).

查看答案和解析>>

同步練習(xí)冊答案