15.設集合P={y|y=ax+b,a,b∈R,a≠0},Q={(x,y)|x2+y2=r2,r>0},則P∩Q中元素的個數(shù)是( 。
A.0B.1C.2D.不能確定

分析 集合P是數(shù)集,集合Q是點集,從而P∩Q=∅,由此得到P∩Q中元素的個數(shù)是0.

解答 解:∵集合P={y|y=ax+b,a,b∈R,a≠0}是數(shù)集,
Q={(x,y)|x2+y2=r2,r>0}是點集,
∴P∩Q=∅,
∴P∩Q中元素的個數(shù)是0.
故選:A.

點評 本題考查交集中元素個數(shù)的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.設隨機變量X~N(3,σ2),若P(X>m)=0.3,則P(m>X>6-m)=( 。
A.0.4B.0.6C.0.7D.0.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.隨機變量X的分布列如表所示,則X的數(shù)學期望為( 。
 X 0 4
 P 0.10.2  0.3 0.4
A.2B.2.4C.2.6D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知a,b,c分別為△ABC的內角A,B,C的對邊,若關于x的不等式x2-ax+1≤0有且只有一個解,且$(a+b)(sinA-sinB)=(sinC-\sqrt{3}sinB)c$,則△ABC面積的最大值為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)設由三個有序數(shù)組成的集合A={(x1,x2,x3)|xi∈{-1,0,1},i=1,2,3},求集合A中滿足條件“|x1|+|x2|+|x3|=2”的元素個數(shù)n;
(2)在(1)的條件下,設f(x)=(a+bx+cx2n=a0+a1x+a2x2+…+a2nx2n,若a0+a2+…+a2n=a1+a3+…+a2n-1=211,求正數(shù)a,c的積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-1,0),$\overrightarrow{c}$=($\sqrt{3}$,k),若2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{c}$垂直,則k=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{x^2},x>0\end{array}\right.$,若函數(shù)g(x)=f(x)-k(x-1)恰有兩個零點,則實數(shù)k的取值范圍是(  )
A.(-∞,-1)∪(4,+∞)B.(-∞,-1]∪[4,+∞)C.[-1,0)∪(4,+∞)D.[-1,0)∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題不正確的是( 。
A.若m⊥n,m⊥α,n?α則n∥αB.m∥α,α⊥β,則m⊥β
C.m⊥β,α⊥β,則m∥α或m?αD.m⊥n,m⊥α,n⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.圖中的程序框圖的算法思路來源于我國古代數(shù)學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入a,b,i的值分別為6、8、0,則輸出的i=4.

查看答案和解析>>

同步練習冊答案