一空間幾何體三視圖如圖所示,則該幾何體的體積為        
2
根據(jù)題意可知該幾何體式四棱錐,高為2,底面是直角梯形,利用錐體的體積公式可知,其幾何體的體積為,故填寫2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知四邊形滿足,,的中點,將沿著翻折成,使面的中點.

(Ⅰ)求四棱錐的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面B1C1E
與直線AA1的交點。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐中,側(cè)面⊥底面,底面是邊長為的正方形,又,分別是的中點.
(Ⅰ)求證:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在梯形中,,,,平面平面,四邊形是矩形,,點在線段上.

(1)求證:平面BCF⊥平面ACFE;
(2)當為何值時,∥平面?證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四面體ABCD中,O是BD的中點,CA=CB=CD=BD=2,AB=AD=。

(1)求證:AO⊥平面BCD;
(2)求E到平面ACD的距離;
(3)求異面直線AB與CD所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知梯形中,,,,、分別是、上的點,,,的中點.沿將梯形翻折,使平面⊥平面 (如圖).


(I)當時,求證: ;
(II)若以、、、為頂點的三棱錐的體積記為,求的最大值;
(III)當取得最大值時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個幾何體的三視圖如右圖所示,其中正視圖中△ABC是邊長為2的正三角形,俯視圖為正六邊形,那么該幾何體的側(cè)視圖的面積為
A.12B.C.D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖是一個幾何體的三視圖,則這個幾何體的體積是 (    )
A.27B.30C.33D.36

查看答案和解析>>

同步練習冊答案