13.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2 017)=( 。
A.335B.337C.1 678D.2 017

分析 求出f(x)在一個(gè)周期內(nèi)所有整數(shù)點(diǎn)的函數(shù)值,根據(jù)f(x)的周期計(jì)算結(jié)果.

解答 解:∵f(x+6)=f(x),∴f(x)的周期為6.
∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=f(1)+f(2)+f(-3)+f(-2)+f(-1)+f(0)=1+2+(-1)+0+(-1)+0=1,
∴f(1)+f(2)+f(3)+…+f(2 017)=336+f(2017)=336+f(1)=336+1=337.
故選B.

點(diǎn)評(píng) 本題考查了函數(shù)周期性的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若$\frac{1}{x}$-$\frac{1}{y}$=2,則$\frac{3x+xy-3y}{x-xy-y}$的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=$\sqrt{6}$,四邊形ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,M,N分別為BC和PB的中點(diǎn)..
(Ⅰ)求證:平面PBC⊥平面PMA;
(Ⅱ)求四面體M-AND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則$\frac{y}{x+1}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=(ax2+x)ex,其中e是自然數(shù)的底數(shù),a∈R.
(1)當(dāng)a<0時(shí),解不等式f(x)>0;
(2)若a>0,試判斷f(x)在(-1,1)上是否有最大或最小值,說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知奇函數(shù)f(x)的定義域?yàn)镽,且f(1-x)=f(1+x),當(dāng)-2<x≤-1時(shí),f(x)=-log${\;}_{\frac{1}{2}}}$(2+x),則函數(shù)y=2f(x)-1在(0,8)內(nèi)的所有零點(diǎn)之和為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),且P(X≤0)=0.1,則P(1≤X≤2)=0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=3${\;}^{-{x}^{2}}$的值域是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在五面體ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠DCF=60°,AD⊥CD,平面CDEF⊥平面ABCD.
(1)證明:直線CE⊥平面ADF;
(2)已知P為棱BC上的點(diǎn),試確定P點(diǎn)位置,使二面角P-DF-A的大小為60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案