函數(shù)f(x)=xcosx在點(π,-π)處的切線方程是
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=π時的導(dǎo)數(shù)值,然后由直線方程的點斜式得答案.
解答: 解:由f(x)=xcosx,得y′=cosx-xsinx,
∴y′|x=π=-1.
則函數(shù)f(x)=xcosx在點(π,-π)處的切線方程是y+π=-(x-π),
即y=-x.
故答案為:y=-x.
點評:本題考查了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x2-1)-x,試判斷f(x)的單調(diào)性并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知異面直線l、m分別在平面α,β內(nèi),且α∩β=a,則直線a ( 。
A、同時與l、m都相交
B、至少與l、m中的一條相交
C、至多與l、m中的一條相交
D、只能與l、m中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
在(0,+∞)的最小值,并確定取得最小值時的x的值,列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.354.87.57
請觀察表中y隨x值變化的特點,完成以下問題:
(1)函數(shù)f(x)=x+
4
x
(x>0)在
 
上是單調(diào)遞減
(2)函數(shù)f(x)=x+
4
x
(x>0)在
 
上是單調(diào)遞增
(3)當(dāng)x=
 
時,f(x)有最小值為
 

(4)對問題(1)用定義法給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使函數(shù)y=x2+2x的單調(diào)遞增的區(qū)間是( 。
A、(-∞,0)
B、(-2,+∞)
C、[-1,+∞)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中正確的是( 。
A、40.7<40.3
B、0.7-1<0.7-2
C、log40.7<log40.3
D、log34<log43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科學(xué)生做)設(shè)x,y∈R,則xy>0是|x+y|=|x|+|y|成立的( 。
A、充分條件,但不是必要條件
B、必要條件,但不是充分條件
C、充分且必要條件
D、既不充分又不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-cos2x
sin2x
的最小正周期是( 。
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單項式-
2
3
axby+8與單項式4a2yb3x-y的和為單項式,求這兩個單項式的積.

查看答案和解析>>

同步練習(xí)冊答案