在數(shù)列{an}中,已知奇數(shù)項(xiàng)依次排列構(gòu)成等差數(shù)列,偶數(shù)項(xiàng)依次排列構(gòu)成等比數(shù)列,a1=1,a2=2,a8=16,且a8是a15和a17的等差中相項(xiàng),求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和.
考點(diǎn):等差數(shù)列的前n項(xiàng)和,等差數(shù)列的通項(xiàng)公式
專題:分類討論,等差數(shù)列與等比數(shù)列
分析:①根據(jù)題意,求出n為奇數(shù)與n為偶數(shù)時(shí),數(shù)列{an}的通項(xiàng)公式即可;
②根據(jù)n為奇數(shù)與n為偶數(shù)時(shí),an的通項(xiàng)公式,求出數(shù)列{an}的前n項(xiàng)和Sn即可.
解答: 解:①數(shù)列{an}中,奇數(shù)項(xiàng)依次排列構(gòu)成等差數(shù)列,偶數(shù)項(xiàng)依次排列構(gòu)成等比數(shù)列,
a1=1,a2=2,a8=16,且a8是a15和a17的等差中相項(xiàng),
∴a15+a17=2a8=32;
又∵a15+a17=(a1+7d)+(a1+8d)=2×1+15d=32,
∴d=2,
∴當(dāng)n=2k-1時(shí),an=1+2(k-1)=2k-1=n;
又a2•q3=a8,
∴q3=
16
2
=8,
∴q=2,
∴當(dāng)n=2k時(shí),an=a2qk-1=2•2k-1=2k=2
n
2
=(
2
)
n
;
∴數(shù)列{an}的通項(xiàng)公式為an=
n,n為奇數(shù)
(
2
)
n
,n為偶數(shù)
;
②n為奇數(shù)時(shí),an=n,n為偶數(shù)時(shí),an=(
2
)
n
;
∴數(shù)列{an}的前n項(xiàng)和為Sn
Sn=1+2+3+4+5+8+…+an;
n=2k-1時(shí),Sn=(1+3+5+…+2k-1)+(2+4+8+…+(
2
)
2k-2

=k2+(2k-2)
=(
n+1
2
)
2
+2
n+1
2
-2
=
1
4
n2+
1
2
n+(
2
)
n+1
-
7
4
;
n=2k時(shí),Sn=(1+3+5+…+2k-1)+(2+4+8+…+(
2
)
2k

=k2+(2k+1-2)
=(
n+1
2
)
2
+2
n
2
+1
-2
=
1
4
n2+
1
2
n+2•(
2
)
n
-
7
4
;
綜上,Sn=
1
4
n
2
+
1
2
n+(
2
)
n+1
-
7
4
,n為奇數(shù)
1
4
n
2
+
1
2
n+2•(
2
)
n
-
7
4
,n為偶數(shù)
點(diǎn)評(píng):本題考查了等差與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的應(yīng)用問題,也考查了分類討論思想的應(yīng)用問題,是綜合性題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知線性方程組的增廣矩陣為
m4m+2
1mm
,若此方程組無實(shí)數(shù)解,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinxsin(
π
2
+x)-x的零點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=2x2+1分別滿足下列條件,請(qǐng)求出切點(diǎn)的坐標(biāo)
(1)切線的傾斜角為45°
(2)平行于直線4x-y-2=0
(3)垂直于直線x+8y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P為拋物線y2=10x上的動(dòng)點(diǎn),則P到直線x+y+5=0的距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
an
man+1
,且a1=4.
(1)當(dāng)m=1時(shí),證明{
1
an
}是等差數(shù)列;
(2)當(dāng)m=2n時(shí),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,記bn=
anan+1
,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長分別為a、b、c,且滿足b+c≤3a,則
c
a
的取值范圍是( 。
A、(1,+∞)
B、(0,2)
C、(1,3)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
π
2
0
e2xcosxdx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一天要排語文、數(shù)學(xué)、英語、生物、體育、班會(huì)六節(jié)課(上午四節(jié),下午二節(jié)),要求上午第一節(jié)不排體育,數(shù)學(xué)課排在上午,班會(huì)課排在下午,問共有多少種不同的排課方法?

查看答案和解析>>

同步練習(xí)冊(cè)答案