【題目】已知f(x)是定義在R上的偶函數(shù),當(dāng)x∈[0,+∞)時,f(x)=2x﹣2,則不等式f(log2x)>0的解集為( )
A.(0, )
B.( ,1)∪(2,+∞)
C.(2,+∞)
D.(0, )∪(2,+∞)
【答案】D
【解析】解:當(dāng)x∈[0,+∞)時,f(x)=2x﹣2,
∴f(1)=0,
又∵當(dāng)x∈[0,+∞)時,f(x)為增函數(shù),又是定義在R上的偶函數(shù),
故f(x)>0時,x>1,或x<﹣1,
故f(log2x)>0時,log2x>1,或log2x<﹣1,
解得:x∈(0, )∪(2,+∞),
所以答案是:D
【考點精析】通過靈活運(yùn)用奇偶性與單調(diào)性的綜合和對數(shù)函數(shù)的單調(diào)性與特殊點,掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性;過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù)即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求實數(shù)a,m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC﹣A′B′C′中,若AA′=2AB,則異面直線AB′與BC′所成角的余弦值為( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)從圓C外一點P(x,y)向圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充分必要條件
C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
D.命題p:?x∈R,使得x2+x﹣1<0,則¬p:?x∈R,使得x2+x﹣1≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC.
(1)求證:OE⊥FC:
(2)若 時,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)畫出函數(shù)f(x)的圖象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人們生活水平的提高,越來越注重科學(xué)飲食.營養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費21元.為了滿足營養(yǎng)專家指出的日常飲食要求,同時使花費最低,每天需要同時食用食物A和食物B多少kg?最低花費是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為(0,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0;
②f( )=1;
③對任意的正實數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f( )=﹣f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m﹣1)≥﹣2的m集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com