【題目】下列命題中正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充分必要條件
C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
D.命題p:?x∈R,使得x2+x﹣1<0,則¬p:?x∈R,使得x2+x﹣1≥0
【答案】D
【解析】解:對于A.若p∨q為真命題,則p,q中至少有一個為真,則p∧q的真假不定,則A錯誤;
對于B.若a>0,b>0,則 ≥2 =2,當且僅當a=b取得等號,反之,若 ≥2即為 ≥0,即 ≥0,即有ab>0,則“a>0,b>0”是“ ≥2”的充分不必要條件,則B錯誤;
對于C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1且x≠2,則x2﹣3x+2≠0”,則C錯誤;
對于D.命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,使得x2+x﹣1≥0,則D正確.
故選D.
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系).
科目:高中數學 來源: 題型:
【題目】設集合P={m|﹣1<m≤0},Q={m|mx2+4mx﹣4<0對任意x恒成立},則P與Q的關系是( )
A.PQ
B.QP
C.P=Q
D.P∩Q=
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱柱ABC﹣A1B1C1的側棱與底面垂直,AA1=AB=AC=2,BC=2 ,M,N分別是CC1 , BC的中點,點P在直線A1B1上,且 .
(1)證明:無論λ取何值,總有AM⊥PN;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在多面體ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F為AB的中點.
(1)求證:EF∥平面ACD;
(2)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,當x∈[0,+∞)時,f(x)=2x﹣2,則不等式f(log2x)>0的解集為( )
A.(0, )
B.( ,1)∪(2,+∞)
C.(2,+∞)
D.(0, )∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C1: +y2=1,x軸被曲線C2:y=x2﹣b截得的線段長等于C1的長半軸長.
(1)求實數b的值;
(2)設C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA、MB分別與C1相交于D、E.
①證明: =0;
②記△MAB,△MDE的面積分別是S1 , S2 . 若 =λ,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)當a= 時,求函數f(x)的值域;
(2)當f(x)在區(qū)間 上為增函數時,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,側棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為 . .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com