分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$,利用周期公式即可得解.
(2)由范圍x∈[-$\frac{π}{4}$,$\frac{π}{6}$],可求2x-$\frac{π}{6}$∈[-$\frac{2π}{3}$,$\frac{π}{6}$],利用正弦函數(shù)的圖象和性質(zhì)即可得解值域.
解答 解:(1)∵f(x)=sinx(sinx+$\sqrt{3}$cosx)
=sin2x+$\sqrt{3}$sinxcosx
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$
=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$,
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)∵x∈[-$\frac{π}{4}$,$\frac{π}{6}$],
∴2x-$\frac{π}{6}$∈[-$\frac{2π}{3}$,$\frac{π}{6}$],
∴sin(2x-$\frac{π}{6}$)∈[-1,$\frac{1}{2}$],
∴函數(shù)f(x)=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的值域?yàn)椋篬-$\frac{1}{2}$,1].
點(diǎn)評(píng) 本題值域考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì),三角函數(shù)周期公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin(2x-$\frac{π}{3}$) | B. | y=sin(2x-$\frac{π}{6}$) | C. | y=sin(2x+$\frac{π}{6}$) | D. | y=sin($\frac{1}{2}$x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-2m | B. | 2m-1 | C. | 1-($\frac{1}{2}$)m | D. | ($\frac{1}{2}$)m-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com