8.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且$\sqrt{3}$a=2csinA.
(1)求角C的大小;
(2)若c=$\sqrt{7}$,a+b=5,求△ABC的面積.

分析 (1)利用正弦定理化簡已知的等式,根據(jù)sinA不為0求出sinC的值,由C為銳角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);
(2)由C的度數(shù)求出sinC與cosC的值,利用余弦定理列出a與b的關(guān)系式,將已知a+b=5兩邊平方,整理得到另一個關(guān)系式,聯(lián)立兩式求出ab的值,再由sinC的值,利用三角形的面積公式即可求出三角形ABC的面積.

解答 解:(1)由正弦定理有:$\sqrt{3}$sinA=2sinAsinC,又sinA≠0,即sinC=$\frac{\sqrt{3}}{2}$,
∵在銳角△ABC中,∠C為銳角,
則∠C=$\frac{π}{3}$.
(2)∵sinC=$\frac{\sqrt{3}}{2}$,cosC=$\frac{1}{2}$,c=$\sqrt{7}$,a+b=5,
∴由余弦定理及已知條件得c2=a2+b2-2abcosC,即a2+b2-ab=7…①,
由a+b=5平方可,化簡得:a2+b2=25-2ab…②,
聯(lián)立①②可得ab=6,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×6×$\frac{\sqrt{3}}{2}$=$\frac{6\sqrt{3}}{4}$.

點評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.《萊因徳紙草書》是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把100個面包分給5個人,使每人所得成等差數(shù)列,且使較大的三份之和的$\frac{1}{7}$是較小的兩份之和,問最小的一份為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求極限:$\underset{lim}{x→∞}$x[ln(x+2)-lnx].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=(t,0,-1),\overrightarrow b=(2,5,{t^2})$,若$\overrightarrow a⊥\overrightarrow b$,則t=0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知等比數(shù)列{an}的前n項和為Sn,a1=1,滿足Sn,Sn+2,Sn+1為等差數(shù)列,則a3等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在計算機(jī)語言中有一種函數(shù)y=int(x)叫做取整函數(shù)(也叫高斯函數(shù)),它表示不超過x的最大整數(shù),如int(0.9)=0,int(3.14)=3,已知$\frac{1}{7}$=0.$\stackrel{•}{1}$$\stackrel{•}{4}$$\stackrel{•}{2}$$\stackrel{•}{8}$$\stackrel{•}{5}$$\stackrel{•}{7}$,令an=int($\frac{1{0}^{n}}{7}$),b1=a1,令當(dāng)n>1時,bn=an-10an-1(n∈N*),則當(dāng)n>1時,則b2014=(  )
A.2009B.8C.2010D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(m,2)(m≠0),$\overrightarrow$=(n,-1),若$\overrightarrow{a}$∥$\overrightarrow$,則$\frac{n}{m}$=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC是邊長為3的等邊三角形,$\overrightarrow{BF}$=λ$\overrightarrow{BC}$($\frac{1}{2}$<λ<1),過點F作DF⊥BC交AC邊于點D,交BA的延長線于點E.

(1)當(dāng)λ=$\frac{2}{3}$時,設(shè)$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,用向量$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{EF}$;
(2)當(dāng)λ為何值時,$\overrightarrow{AE}$•$\overrightarrow{FC}$取得最大值,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知:$\overrightarrow{a}$=(2sinx,2cosx),$\overrightarrow$=(cosx,-cosx),f(x)=$\overrightarrow{a}$$•\overrightarrow$.
(1)若$\overrightarrow{a}$與$\overrightarrow$共線,且x∈($\frac{π}{2}$,π),求x的值;
(2)求函數(shù)f(x)的周期;
(3)若對任意x∈[0,$\frac{π}{2}$]不等式m-2≤f(x)≤m+$\sqrt{2}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案