如圖所示,已知P為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右支上的一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,圓C為三角形PF1F2的內切圓,求圓C的圓心的橫坐標.
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:點P是雙曲線右支上一點,按雙曲線的定義,|PF1|-|PF2|=2a,設三角形PF1F2的內切圓心在橫軸上的投影為A(x,0),B、C分別為內切圓與PF1、PF2的切點.由同一點向圓引得兩條切線相等知|PF1|-|PF2|=(PB+BF1)-(PC+CF2),由此得到△PF1F2的內切圓的圓心橫坐標.
解答: 解:因為點P是雙曲線右支上一點,
所以由雙曲線的定義,|PF1|-|PF2|=2a,
若設三角形PF1F2的內切圓心在橫軸上的投影為A(x,0),該點也是內切圓與橫軸的切點.
設D、E分別為內切圓與PF1、PF2的切點.考慮到同一點向圓引得兩條切線相等:
則有:PF1-PF2=(PD+BF1)-(PE+EF2
=DF1-EF2=AF1-F2A=(c+x)-(c-x)=2x=2a
所以x=a
所以內切圓的圓心橫坐標為a.
點評:本題考查雙曲線的定義、切線長定理,體現(xiàn)了轉化的數(shù)學思想以及數(shù)形結合的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二項式(
x
-
2
3x
)n
的展開式的二項式系數(shù)和為128.
(1)求n的值;
(2)求該二項展開式的各項的系數(shù)和;
(3)求該二項展開式的一次項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2+ax-a(a∈R).
(1)當a=-3時,求函數(shù)f(x)的極值;
(2)若a≤1,求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(x,2),
b
=(x+n,2x-
3
2
),n∈N+,函數(shù)f(x)=
a
b
在[0,1]上的最小值與最大值的和為an,數(shù)列{bn}的前n項和Sn滿足:Sn+4bn=n(n∈N+
(Ⅰ)求an
(Ⅱ)證明數(shù)列{bn-1}為等比數(shù)列,并求出bn的表達式;
(Ⅲ)令cn=-an•(bn-1),試問:在數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足:a2+a4=22,S4=50.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn的最大值,并求Sn取最大值時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,數(shù)列{an}的前n項和Sn=nbn
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設cn=
1
an(2bn+3)
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}滿足a3=7,a5+a7=26,{an}的前n項和為Sn
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{an}的前20項和S20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2•an(n≥2),而a1=1,通過計算a2,a3,a4,試猜想這個數(shù)列的通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和是Sn,且Sn+
1
2
an=1.
(1)求數(shù)列{an}的通項公式;
(2)記bn=log3
an2
4
,數(shù)列{
1
bnbn+2
}的前n項和為Tn,證明:Tn
3
16

查看答案和解析>>

同步練習冊答案