4.“m>0”是“x2+x+m=0無實根”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 x2+x+m=0無實根?△<0,即可判斷出結(jié)論.

解答 解:x2+x+m=0無實根?△=1-4m<0,?m$>\frac{1}{4}$.
∴“m>0”是“x2+x+m=0無實根”的必要不充分條件,
故選:B.

點評 本題考查了一元二次方程的實數(shù)根與判別式的關(guān)系、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{m,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$,若函數(shù)F(x)=f(x)-x只有一個零點,則實數(shù)m的取值范圍是-2≤m<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列結(jié)論判斷正確的是( 。
A.任意三點確定一個平面
B.任意四點確定一個平面
C.三條平行直線最多確定一個平面
D.正方體ABCD-A1B1C1D1中,AB與CC1異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若點A(-2,-3),B(-3,-2),直線l過點P(1,1)且與線段AB相交,則l的斜率k的取值范圍是( 。
A.k≤-$\frac{4}{3}$或k≥-$\frac{3}{4}$B.k≤$\frac{3}{4}$或k≥$\frac{4}{3}$C.-$\frac{4}{3}$≤k≤-$\frac{3}{4}$D.$\frac{3}{4}$≤k≤$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對于正整數(shù)n,設(shè)曲線y=xn(2-x)在x=2處的切線與y軸交點的縱坐標為an,則數(shù)列{an}的前n項和為Sn=2n+2-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知在等差數(shù)列{an}中,a2=6,a4=14,則數(shù)列{an}前10項的和為( 。
A.100B.400C.380D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校從高一年級學(xué)生中隨機抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖的頻率分
布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校高一年級共有學(xué)生1000人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù).
(3)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學(xué)生中隨機選取2名學(xué)生,試用列舉法求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值大于10的槪率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=$\frac{\sqrt{lg(x+2)}}{x-1}$的定義域是[-1,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知實數(shù)a>1,命題p:函數(shù)$y=lo{g_{\frac{1}{2}}}({x^2}+2x+a)$的定義域為R,命題q:|x|<1是x<a的充分不必要條件,則( 。
A.p或q為真命題B.p且q為假命題C.¬p且q為真命題D.¬p或¬q為真命題

查看答案和解析>>

同步練習(xí)冊答案