12.若焦點(diǎn)在x軸上的橢圓的焦距為16,長(zhǎng)軸長(zhǎng)為18,則該橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{81}$+$\frac{{y}^{2}}{17}$=1.

分析 設(shè)焦點(diǎn)在x軸上的橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得2c=16,2a=18,可得a,c,b,進(jìn)而得到橢圓方程.

解答 解:設(shè)焦點(diǎn)在x軸上的橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得2c=16,2a=18,
即a=9,c=8,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{17}$,
即有橢圓的方程為$\frac{{x}^{2}}{81}$+$\frac{{y}^{2}}{17}$=1.
故答案為:$\frac{{x}^{2}}{81}$+$\frac{{y}^{2}}{17}$=1.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,注意運(yùn)用待定系數(shù)法,考查橢圓的性質(zhì),以及運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}是公比為2的等比數(shù)列,且4a1為am,an的等比中項(xiàng),則$\frac{1}{m}+\frac{4}{n}$的最小值為( 。
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.把函數(shù)y=3sin2x+$\sqrt{3}$sinxcosx+4cos2x化成y=Asin(ωx+φ)+B的形式,并求出其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法正確的是(  )
A.函數(shù)y=2x2-x+1在(0,+∞)上是增函數(shù)
B.冪函數(shù)在(0,+∞)上都是增函數(shù)
C.函數(shù)y=log2(x+$\sqrt{{x}^{2}+1}$)既不是奇函數(shù),也不是偶函數(shù)
D.已知f(x)是定義在R上的增函數(shù),若a+b>0,則有f(a)+f(b)>f(-a)+f(-b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,若f(a)≤a,則實(shí)數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.對(duì)于曲線C所在平面內(nèi)的點(diǎn)O,若存在以O(shè)為頂點(diǎn)的角θ,使得θ≥∠AOB對(duì)于曲線C上的任意兩個(gè)不同點(diǎn)A、B恒成立,則稱θ為曲線C相對(duì)于O的“界角”,并稱最小的“界角”為曲線C相對(duì)于O的“確界角”,已知曲線M:y=$\left\{\begin{array}{l}{\sqrt{1+9{x}^{2}},x≤0}\\{1+x{e}^{x-1},x>0}\end{array}\right.$,(其中e為自然對(duì)數(shù)的底數(shù)),O為坐標(biāo)原點(diǎn),則曲線M相對(duì)于O的“確界角”為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax+$\frac{a-1}{x}$+(1-2a)(a>0)
(1)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍;
(2)證明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>ln(n+1)+$\frac{n}{2(n+1)}$(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.為了增強(qiáng)環(huán)保意識(shí),某校從男生中隨機(jī)制取了60人,從女生中隨機(jī)制取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如表所示,經(jīng)計(jì)算K2=7.822,則環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān)的把握為(  )
優(yōu)秀非優(yōu)秀總計(jì)
男生402060
女生203050
總計(jì)6050110
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若$|{\begin{array}{l}{2^x}&1\\ 3&{2^x}\end{array}}|=0$,則x的值是${log}_{2}\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案