【題目】某有機(jī)水果種植基地試驗(yàn)種植的某水果在售賣前要成箱包裝,每箱80個(gè),每一箱水果在交付顧客之前要按約定標(biāo)準(zhǔn)對(duì)水果作檢測(cè),如檢測(cè)出不合格品,則更換為合格品.檢測(cè)時(shí),先從這一箱水果中任取10個(gè)作檢測(cè),再根據(jù)檢測(cè)結(jié)果決定是否對(duì)余下的所有水果作檢測(cè).設(shè)每個(gè)水果為不合格品的概率都為,且各個(gè)水果是否為不合格品相互獨(dú)立.

(Ⅰ)記10個(gè)水果中恰有2個(gè)不合格品的概率為,求取最大值時(shí)p的值;

(Ⅱ)現(xiàn)對(duì)一箱水果檢驗(yàn)了10個(gè),結(jié)果恰有2個(gè)不合格,以(Ⅰ)中確定的作為p的值.已知每個(gè)水果的檢測(cè)費(fèi)用為1.5元,若有不合格水果進(jìn)入顧客手中,則種植基地要對(duì)每個(gè)不合格水果支付a元的賠償費(fèi)用

(ⅰ)若不對(duì)該箱余下的水果作檢驗(yàn),這一箱水果的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為X,求EX;

(ⅱ)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),當(dāng)種植基地要對(duì)每個(gè)不合格水果支付的賠償費(fèi)用至少為多少元時(shí),將促使種植基地對(duì)這箱余下的所有水果作檢驗(yàn)?

【答案】(Ⅰ)0.2 (Ⅱ) (ⅰ) (ⅱ)8

【解析】

(Ⅰ)記10個(gè)水果中恰有2個(gè)不合格品的概率為,求得,利用導(dǎo)數(shù)即可求解函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最值.

(Ⅱ)由(Ⅰ)知,(ⅰ)中,依題意知,進(jìn)而利用公式,即可求解;

(ⅱ)如果對(duì)余下的水果作檢驗(yàn),得這一箱水果所需要的檢驗(yàn)費(fèi)為120元,列出相應(yīng)的不等式,判定即可得到結(jié)論.

(Ⅰ)記10個(gè)水果中恰有2個(gè)不合格品的概率為f(p),則,

,得.

且當(dāng)時(shí),;當(dāng)時(shí),.

的最大值點(diǎn).

(Ⅱ)由(Ⅰ)知

(ⅰ)令Y表示余下的70個(gè)水果中的不合格數(shù),依題意知,

.

(ⅱ)如果對(duì)余下的水果作檢驗(yàn),則這一箱水果所需要的檢驗(yàn)費(fèi)為120元,

,得,且,

∴當(dāng)種植基地要對(duì)每個(gè)不合格水果支付的賠償費(fèi)用至少為8元時(shí),將促使種植基地對(duì)這箱余下的所有水果作檢測(cè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為100元,出廠單價(jià)定為160元,該廠為了鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂一個(gè),所訂購(gòu)的全部零件的出廠單價(jià)就降低0.05元,但出廠單價(jià)不能低于130.

1)某零售商若一次訂購(gòu)該零件300個(gè),求該零售商所訂購(gòu)零件的出廠單價(jià);

2)若某零售商一次訂購(gòu)x個(gè)(xN*),零件的實(shí)際出廠單價(jià)為y元,試求yfx)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【題目】已知拋物線C:y2=2x,過(guò)點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.

(1)證明:坐標(biāo)原點(diǎn)O在圓M上;

(2)設(shè)圓M過(guò)點(diǎn)P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且時(shí),總有成立.

a的值;

判斷并證明函數(shù)的單調(diào)性;

上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為山腳兩側(cè)共線的3點(diǎn),在山頂處測(cè)得3點(diǎn)的俯角分別為,計(jì)劃沿直線開(kāi)通穿山隧道,為求出隧道的長(zhǎng)度,你認(rèn)為還需要直接測(cè)量出中哪些線段的長(zhǎng)度?根據(jù)條件,并把你認(rèn)為需要測(cè)量的線段長(zhǎng)度作為已知量,寫(xiě)出計(jì)算隧道長(zhǎng)度的運(yùn)算步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上.

)求橢圓的標(biāo)準(zhǔn)方程.

)是否存在斜率為的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案