1.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,A為橢圓與y軸的一個(gè)交點(diǎn),△ABC為橢圓的內(nèi)接正三角形,則△ABC的邊長(zhǎng)為$\frac{72\sqrt{3}}{31}$.

分析 設(shè)正三角形ABC的邊長(zhǎng)為2a,頂點(diǎn)A是(0,2),并且且高在y軸上,即有B(-a,2-$\sqrt{3}$a),C(b,2-$\sqrt{3}$a),
再結(jié)合點(diǎn)B在橢圓上,代入橢圓方程,解關(guān)于a的方程,即可得到所求邊長(zhǎng).

解答 解:設(shè)正三角形ABC的邊長(zhǎng)為2a,
頂點(diǎn)A是(0,2),并且且高在y軸上,
即有B(-a,2-$\sqrt{3}$a),C(b,2-$\sqrt{3}$a),
因?yàn)辄c(diǎn)B在橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上,所以有$\frac{{a}^{2}}{9}$+$\frac{(2-\sqrt{3}a)^{2}}{4}$=1,
解得a=$\frac{36\sqrt{3}}{31}$,
即有2a=$\frac{72\sqrt{3}}{31}$.
故答案為:$\frac{72\sqrt{3}}{31}$.

點(diǎn)評(píng) 本題主要考查橢圓的幾何性質(zhì),考查學(xué)生的計(jì)算能力與分析問題解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=6,$\overrightarrow{a}$與$\overrightarrow$的夾角是150°,計(jì)算:
(1)($\overrightarrow{a}+2\overrightarrow$)•(2$\overrightarrow{a}-\overrightarrow$);
(2)|4$\overrightarrow{a}-2\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-$\frac{1}{2}{x^2}$-2x+c
(1)求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右準(zhǔn)線l:x=$\frac{9\sqrt{5}}{5}$,離心率e=$\frac{\sqrt{5}}{3}$,A,B是橢圓上的兩定點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,當(dāng)直線AB與OP斜率均存在時(shí),求|kAB|+|kOP|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3-3x2-9x+11.
(1)寫出函數(shù)的單調(diào)遞減區(qū)間;
(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,設(shè)拋物線y2=4x的焦點(diǎn)為F,O為拋物線的頂點(diǎn).過F作拋物線的弦PQ,直線OP,OQ分別交直線x-y+2=0于點(diǎn)M,N.
(Ⅰ)當(dāng)PQ∥MN時(shí),求$\overrightarrow{{O}{P}}•\overrightarrow{{O}Q}$的值;
(Ⅱ)設(shè)直線PQ的方程為x-my-1=0,記△OMN的面積為S(m),求S(m)關(guān)于m的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,上下兩個(gè)頂點(diǎn)為B1,B2,四邊形F1B1F2B2的周長(zhǎng)為8,∠F1B1F2=120°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)D(1,0)斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE、AF分別交直線x=3于點(diǎn)M、N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′與直線l的斜率k的乘積是否為定值?若是,求出這個(gè)定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)實(shí)數(shù)x,y滿足2≤$\sqrt{x}$•y≤3,1≤$\frac{x}{\sqrt{y}}$≤2,則使得a≤$\frac{{x}^{3}}{{y}^{4}}$≤b恒成立的b的最小值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解不等式.
(1)ax2-5ax+5a>0(a≠0);
(2)2x2+kx-k≤0;
(3)x2-5ax+6a2>0;
(4)ax2-(a+1)x+1<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案