12.已知tanθ=-$\frac{3}{4}$,$θ∈(\frac{π}{2},π)$,則sinθ=$\frac{3}{5}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得sinθ的值.

解答 解:∵tanθ=-$\frac{3}{4}$=$\frac{sinθ}{cosθ}$,sin2θ+cos2θ=1,$θ∈(\frac{π}{2},π)$,
則sinθ=$\frac{3}{5}$,
故答案為:$\frac{3}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,線段AB,BD在平面a內(nèi),BD⊥AB,線段AC⊥a,且AB=a,BD=b,Ac=c,求C、D間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.數(shù)列{an}滿足a1=2,a2=2,an+2=2an+1-an+2.
①設(shè)bn=an+1-an,證明{bn}是等差數(shù)列;
②求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a∈R,直線l1:x+2y=a+2和直線l2:2x-y=2a-1分別與圓E:(x-a)2+(y-1)2=4相交于A、C和B、D,則四邊形ABCD的面積為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$\vec a=(1,-1)$,$\vec b=(-1,2)$,則$|{2\vec a-\vec b}$|=( 。
A.5B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系中,第一象限內(nèi)的動點P(x,y)滿足:
①與點A(1,1)、點B(-1,-1)連線斜率互為相反數(shù);
②x+y<$\frac{5}{2}$.
(1)求動點P的軌跡C1的方程;
(2)若存在直線m與C1和橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)均相切于同一點,求橢圓C2離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.集合A={x|9x+p•3x+q=0,x∈R},B={x|q•9x+p•3x+1=0,x∈R},且實數(shù)pq≠0
(1)證明:若x0∈A,則-x0∈B;
(2)是否存在實數(shù)p,q滿足A∩B≠∅且A∩CRB={1}?若存在,求出p,q的值,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.要從高一(5)班50名學生中隨機抽出5人參加一項活動,假設(shè)從0開始編號,用隨機數(shù)表法進行抽樣,從下表的第一個數(shù)1開始向右讀數(shù),則第5人的號碼是( 。
隨機數(shù)表:16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43.
A.49B.54C.44D.43

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=x({\frac{2}{{{2^x}-1}}+k})$為偶函數(shù).
(1)求k的值;
(2)若$g(x)=\frac{f(x)}{x}$,當x∈(0,1]時,求g(x)的值域.

查看答案和解析>>

同步練習冊答案