10.將二進(jìn)制數(shù)10101(2)化為十進(jìn)制數(shù)為21,再化為四進(jìn)制數(shù)為111(4)

分析 進(jìn)制轉(zhuǎn)換為十進(jìn)制的方法是依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重;利用“除k取余法”是將十進(jìn)制數(shù)除以4,然后將商繼續(xù)除以4,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:10101(2)=1×20+0×21+1×22+0×23+1×24=21,
21÷4=5…1
5÷4=1…1
1÷4=0…1
故21(10)=111(4
故答案為:21,111(4)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是算法的概念,考查了進(jìn)位制換算的方法--除K取余法,由二進(jìn)制轉(zhuǎn)化為十進(jìn)制的方法,我們只要依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重,即可得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$滿足f(-x)=-f(x),a為常數(shù).
(1)求a的值;
(2)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;
(3)若對(duì)于[3,4]上的每一個(gè)x的值,不等式f(x)>($\frac{1}{2}$)x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知非空集合A、B滿足以下四個(gè)條件:
①A∪B={1,2,3,4,5,6,7};②A∩B=∅;③A中的元素個(gè)數(shù)不是A中的元素;④B中的元素個(gè)數(shù)不是B中的元素.
若集合A含有2個(gè)元素,則滿足條件的A有5個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知4sinα+3cosα=0,則tanα的值是( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知a,b∈R,則a=b是(a-b)+(a+b)i為純虛數(shù)的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)甲,乙兩個(gè)圓柱的底面面積分別為S1,S2,體積為V1,V2,若它們的側(cè)面積相等且$\frac{S_1}{S_2}=\frac{9}{4}$,則$\frac{V_1}{V_2}$的值是( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知△ABC的頂點(diǎn)是A(-1,-1),B(3,1),C(1,6),直線l平行于AB,且分別交AC、BC于E、F,△CEF的面積是△CAB面積的$\frac{1}{4}$,則直線l的方程為x-2y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)y=loga(x2-ax+$\frac{1}{2}$)有最小值,則a的取值范圍是(  )
A.0<a<1B.0<a<$\sqrt{2}$,a≠1C.1<a<$\sqrt{2}$D.a≥$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,角A、B、C所對(duì)邊分別為a、b、c,若a2+b2=4a+6b-13,sinC=2sinA,則cosC的值為( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{7}{8}$D.$\frac{11}{16}$

查看答案和解析>>

同步練習(xí)冊(cè)答案