7.已知$sinα=\frac{2}{3},cosβ=-\frac{3}{5}$,α,β都是第二象限角,則cos(α+β)=$\frac{{3\sqrt{5}-8}}{15}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sinβ的值,利用兩角和的余弦函數(shù)公式即可求值得解.

解答 解:∵$sinα=\frac{2}{3},cosβ=-\frac{3}{5}$,α,β都是第二象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{3}$,sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{4}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=(-$\frac{\sqrt{5}}{3}$)×(-$\frac{3}{5}$)-$\frac{2}{3}$×$\frac{4}{5}$=$\frac{{3\sqrt{5}-8}}{15}$.
故答案為:$\frac{{3\sqrt{5}-8}}{15}$.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的余弦函數(shù)公式在三角函數(shù)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.根據(jù)下列條件,判斷△ABC的形狀:
(1)sinA:sinB:sinC=2:3:4;
(2)B=60°,b2=ac.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若|$\overrightarrow{a}$|=5,向量$\overrightarrow$與$\overrightarrow{a}$反向,|$\overrightarrow$|=3,則$\overrightarrow{a}$=-$\frac{5}{3}$$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow a=(-2,3,1)$,$\overrightarrow b=(1,0,-1)$,則$|\overrightarrow a+\overrightarrow b|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD是菱形.過AB的平面與側(cè)棱CC1,DD1分別交于點(diǎn)E,F(xiàn).
(Ⅰ)求證:EF∥AB;
(Ⅱ)求證:A1C1⊥平面DBB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果奇函數(shù)y=f(x)(x≠0)在x∈(-∞,0)時,f(x)=x+1,那么使f(x-2)<0成立的x的取值范圍是( 。
A.(-∞,1)∪(3+∞)B.(-∞,-1)∪(0,1)C.(-∞,0)∪(0,3)D.(-∞,1)∪(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx,則f(x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.動圓M過定點(diǎn)(3,0),且與直線x=-3相切,設(shè)圓心M的軌跡為C.
(1)求C的方程;
(2)若過點(diǎn)P(6,0)的直線l與軌跡C交于A、B兩點(diǎn),且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“b<a<0”是“$\frac{a}+\frac{a}>2$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案